Title:
|
On exact null controllability of Black-Scholes equation (English) |
Author:
|
Sakthivel, Kumarasamy |
Author:
|
Balachandran, Krishnan |
Author:
|
Sowrirajan, Rangarajan |
Author:
|
Kim, Jeong-Hoon |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
44 |
Issue:
|
5 |
Year:
|
2008 |
Pages:
|
685-704 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we discuss the exact null controllability of linear as well as nonlinear Black–Scholes equation when both the stock volatility and risk-free interest rate influence the stock price but they are not known with certainty while the control is distributed over a subdomain. The proof of the linear problem relies on a Carleman estimate and observability inequality for its own dual problem and that of the nonlinear one relies on the infinite dimensional Kakutani fixed point theorem with $L^2$ topology. (English) |
Keyword:
|
Black–Scholes equation |
Keyword:
|
volatility |
Keyword:
|
controllability |
Keyword:
|
observability |
Keyword:
|
Carleman estimates |
MSC:
|
45K05 |
MSC:
|
47N10 |
MSC:
|
91B28 |
MSC:
|
91G10 |
MSC:
|
93B05 |
MSC:
|
93C20 |
MSC:
|
93E03 |
idZBL:
|
Zbl 1177.93021 |
idMR:
|
MR2479312 |
. |
Date available:
|
2009-09-24T20:39:10Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135882 |
. |
Reference:
|
[1] Adams R. A., Fournier J. F.: Sobolev Spaces.Second edition. Academic Press, New York 2003 Zbl 1098.46001, MR 2424078 |
Reference:
|
[2] Khodja F. Ammar, Benabdallah, A., Dupaix C.: Null controllability of some reaction diffusion systems with one control force.J. Math. Anal. Appl. 320 (2006), 928–943 MR 2226005 |
Reference:
|
[3] Amster P., Averbuj C. G., Mariani M. C.: Solutions to a stationary nonlinear Black–Scholes type equation.J. Math. Anal. Appl. 276 (2002), 231–238 Zbl 1027.60077, MR 1944348 |
Reference:
|
[4] Amster P., Averbuj C. G., Mariani M. C., Rial D.: A Black–Scholes option pricing model with transaction costs.J. Math. Anal. Appl. 303 (2005), 688–695 Zbl 1114.91044, MR 2122570 |
Reference:
|
[5] Anita S., Barbu V.: Null controllability of nonlinear convective heat equation.ESAIM: Control, Optimization and Calculus of Variations 5 (2000), 157–173 MR 1744610 |
Reference:
|
[6] Barbu V.: Controllability of parabolic and Navier–Stokes equations.Scientiae Mathematicae Japonicae 56 (2002), 143–211 Zbl 1010.93054, MR 1911840 |
Reference:
|
[7] Black F., Scholes M.: The pricing of options and corporate liabilities.J. Political Economics 81 (1973), 637–659 Zbl 1092.91524 |
Reference:
|
[8] Bouchouev I., Isakov V.: The inverse problem of option pricing.Inverse Problems 13 (1997), L11–L17 Zbl 0894.90014, MR 1474358 |
Reference:
|
[9] Bouchouev I., Isakov V.: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets.Inverse problems 15 (1999), R95–R116 Zbl 0938.35190, MR 1696930 |
Reference:
|
[10] Chae D., Imanivilov, O. Yu., Kim M. S.: Exact controllability for semilinear parabolic equations with Neumann boundary conditions.J. Dynamical Control Systems 2 (1996), 449–483 MR 1420354 |
Reference:
|
[11] Doubova A., Fernandez-Cara E., Gonzalez-Burgos, M., Zuazua E.: On the controllability of parabolic systems with a nonlinear term involving the state and the gradient.SIAM J. Control Optim. 41 (2002), 789–819 Zbl 1038.93041, MR 1939871 |
Reference:
|
[12] Egger H., Engl H. W.: Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates.Inverse Problems 21 (2005) 1027–1045 Zbl 1205.65194, MR 2146819 |
Reference:
|
[13] Fursikov A. V., Imanuvilov O. Yu.: Controllability of Evolution Equations.Lecture Notes Series 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul 1996 Zbl 0862.49004, MR 1406566 |
Reference:
|
[14] Hörmander L.: Linear Partial Differential Operators I – IV.Springer–Verlag, Berlin 1985 |
Reference:
|
[15] Imanuvilov O. Yu.: Boundary controllability of parabolic equations.Sbornik Mathematics 187 (1995), 879–900 MR 1349016 |
Reference:
|
[16] Imanuvilov O. Yu., Yamamoto M.: Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations.Publ. Res. Inst. Math. Sci. 39 (2003), 227–274 Zbl 1065.35079, MR 1987865 |
Reference:
|
[17] Ingber L., Wilson J. K.: Statistical mechanics of financial markets: Exponential modifications to Black–Scholes.Mathematical and Computer Modelling 31 (2000) 167–192 Zbl 1042.91524, MR 1761486 |
Reference:
|
[18] Jódar L., Sevilla-Peris P., Cortes J. C., Sala R.: A new direct method for solving the Black–Scholes equations.Appl. Math. Lett. 18 (2005), 29–32 MR 2121550 |
Reference:
|
[19] Kangro R., Nicolaides R.: Far field boundary conditions for Black–Scholes equations.SIAM J. Numer. Anal. 38 (2000), 1357–1368 Zbl 0990.35013, MR 1790037 |
Reference:
|
[20] Sakthivel K., Balachandran, K., Sritharan S. S.: Controllability and observability theory of certain parabolic integro-differential equations.Comput. Math. Appl. 52 (2006), 1299–1316 MR 2307079 |
Reference:
|
[21] Sakthivel K., Balachandran, K., Lavanya R.: Exact controllability of partial integrodifferential equations with mixed boundary conditions.J. Math. Anal. Appl. 325 (2007), 1257–1279 Zbl 1191.93013, MR 2270082 |
Reference:
|
[22] Sowrirajan R., Balachandran K.: Determination of a source term in a partial differential equation arising in finance.Appl. Anal. (to appear) Zbl 1170.35328, MR 2536788 |
Reference:
|
[23] Widdicks M., Duck P. W., Andricopoulos A. D., Newton D. P.: The Black–Scholes equation revisited: Asymptotic expansions and singular perturbations.Mathematical Finance 15 (2005), 373–371 Zbl 1124.91342, MR 2132196 |
Reference:
|
[24] Wilmott I., Howison, S., Dewynne J.: The Mathematics of Financial Derivatives.Cambridge University Press, Cambridge 1995 Zbl 0842.90008, MR 1357666 |
. |