Previous |  Up |  Next


conditioning; gluing; g-ordinal sum; construction of copulas
The univariate conditioning of copulas is studied, yielding a construction method for copulas based on an a priori given copula. Based on the gluing method, g-ordinal sum of copulas is introduced and a representation of copulas by means of g-ordinal sums is given. Though different right conditionings commute, this is not the case of right and left conditioning, with a special exception of Archimedean copulas. Several interesting examples are given. Especially, any Ali-Mikhail-Haq copula with a given parameter λ > 0 allows to construct via conditioning any Ali-Mikhail-Haq copula with parameter μ $\in $ [0,λ].
[1] Javid A. Ahmadi: Copulas with truncation-invariance property. Comm. Statist. A – Theory Methods, to appear MR 2589808
[2] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation Operators: Properties, Classes and Construction Methods. (Studies in Fuzziness and Soft Computing – Aggregation Operators, New Trend and Applications.) Physica-Verlag, Heidelberg 2002, pp. 3–106 MR 1936383 | Zbl 1039.03015
[3] Charpentier A., Juri A.: Limiting dependence structures for tail events, with applications to credit derivatives. J. Appl. Probab. 43 (2006), 563–586 DOI 10.1239/jap/1152413742 | MR 2248584 | Zbl 1117.62049
[4] Durante F., Foschi, B., Spizzichino S.: Threshold copulas and positive dependence. Statist. Probab. Lett., to appear MR 2474379 | Zbl 1148.62032
[5] Durante F., Mesiar R., Papini P. L., Sempi C.: 2-Increasing binary aggregation operators. Inform. Sci. 177 (2007), 111–129 DOI 10.1016/j.ins.2006.04.006 | MR 2272737 | Zbl 1142.68541
[6] Durante F., Saminger-Platz, S., Sarkoci P.: On representations of 2-increasing binary aggregation functions. Inform. Sci. 178 (2008), 4534–4541 DOI 10.1016/j.ins.2008.08.004 | MR 2467125 | Zbl 1163.68340
[7] Durante F., Saminger-Platz, S., Sarkoci P.: Rectangular patchwork for bivariate copulas and tail dependence. Comm. Statist. A – Theory Methods, to appear MR 2596930 | Zbl 1170.62329
[8] Juri A., Wüthrich M. V.: Copula convergence theorems for tail events. Insurance Math. Econom. 30 (2002), 405–420 DOI 10.1016/S0167-6687(02)00121-X | MR 1921115 | Zbl 1039.62043
[9] Juri A., Wüthrich M. V.: Tail dependence from a distributional point of view. Extreme 6 (2003), 213–246 DOI 10.1023/B:EXTR.0000031180.93684.85 | MR 2081852 | Zbl 1049.62055
[10] Klement E. P., Mesiar, R., Pap E.: Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems 104 (1999), 3–14 MR 1685803 | Zbl 0953.26008
[11] Mesiar R., Szolgay J.: $W$-ordinal sums of copulas and quasi-copulas. In: Proc. MAGIA 2004 Conference, Kočovce 2004, pp. 78–83
[12] Nelsen R. B.: An Introduction to Copulas. Second edition. Springer, Berlin 2006 MR 2197664 | Zbl 1152.62030
[13] Siburg K. F., Stoimenov P. A.: Gluing copulas. Comm. Statist. A – Theory Methods 37 (2008), 3124–3134 DOI 10.1080/03610920802074844 | MR 2467756
[14] Sklar M.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600
Partner of
EuDML logo