Title:
|
Univariate conditioning of copulas (English) |
Author:
|
Mesiar, Radko |
Author:
|
Jágr, Vladimír |
Author:
|
Juráňová , Monika |
Author:
|
Komorníková, Magda |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
44 |
Issue:
|
6 |
Year:
|
2008 |
Pages:
|
807-816 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The univariate conditioning of copulas is studied, yielding a construction method for copulas based on an a priori given copula. Based on the gluing method, g-ordinal sum of copulas is introduced and a representation of copulas by means of g-ordinal sums is given. Though different right conditionings commute, this is not the case of right and left conditioning, with a special exception of Archimedean copulas. Several interesting examples are given. Especially, any Ali-Mikhail-Haq copula with a given parameter λ > 0 allows to construct via conditioning any Ali-Mikhail-Haq copula with parameter μ $\in $ [0,λ]. (English) |
Keyword:
|
conditioning |
Keyword:
|
gluing |
Keyword:
|
g-ordinal sum |
Keyword:
|
construction of copulas |
MSC:
|
60E05 |
MSC:
|
62H05 |
idZBL:
|
Zbl 1196.62059 |
idMR:
|
MR2488908 |
. |
Date available:
|
2009-09-24T20:40:26Z |
Last updated:
|
2013-09-21 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135892 |
. |
Reference:
|
[1] Javid A. Ahmadi: Copulas with truncation-invariance property.Comm. Statist. A – Theory Methods, to appear MR 2589808 |
Reference:
|
[2] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation Operators: Properties, Classes and Construction Methods.(Studies in Fuzziness and Soft Computing – Aggregation Operators, New Trend and Applications.) Physica-Verlag, Heidelberg 2002, pp. 3–106 Zbl 1039.03015, MR 1936383 |
Reference:
|
[3] Charpentier A., Juri A.: Limiting dependence structures for tail events, with applications to credit derivatives.J. Appl. Probab. 43 (2006), 563–586 Zbl 1117.62049, MR 2248584, 10.1239/jap/1152413742 |
Reference:
|
[4] Durante F., Foschi, B., Spizzichino S.: Threshold copulas and positive dependence.Statist. Probab. Lett., to appear Zbl 1148.62032, MR 2474379 |
Reference:
|
[5] Durante F., Mesiar R., Papini P. L., Sempi C.: 2-Increasing binary aggregation operators.Inform. Sci. 177 (2007), 111–129 Zbl 1142.68541, MR 2272737, 10.1016/j.ins.2006.04.006 |
Reference:
|
[6] Durante F., Saminger-Platz, S., Sarkoci P.: On representations of 2-increasing binary aggregation functions.Inform. Sci. 178 (2008), 4534–4541 Zbl 1163.68340, MR 2467125, 10.1016/j.ins.2008.08.004 |
Reference:
|
[7] Durante F., Saminger-Platz, S., Sarkoci P.: Rectangular patchwork for bivariate copulas and tail dependence.Comm. Statist. A – Theory Methods, to appear Zbl 1170.62329, MR 2596930 |
Reference:
|
[8] Juri A., Wüthrich M. V.: Copula convergence theorems for tail events.Insurance Math. Econom. 30 (2002), 405–420 Zbl 1039.62043, MR 1921115, 10.1016/S0167-6687(02)00121-X |
Reference:
|
[9] Juri A., Wüthrich M. V.: Tail dependence from a distributional point of view.Extreme 6 (2003), 213–246 Zbl 1049.62055, MR 2081852, 10.1023/B:EXTR.0000031180.93684.85 |
Reference:
|
[10] Klement E. P., Mesiar, R., Pap E.: Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms.Fuzzy Sets and Systems 104 (1999), 3–14 Zbl 0953.26008, MR 1685803 |
Reference:
|
[11] Mesiar R., Szolgay J.: $W$-ordinal sums of copulas and quasi-copulas.In: Proc. MAGIA 2004 Conference, Kočovce 2004, pp. 78–83 |
Reference:
|
[12] Nelsen R. B.: An Introduction to Copulas.Second edition. Springer, Berlin 2006 Zbl 1152.62030, MR 2197664 |
Reference:
|
[13] Siburg K. F., Stoimenov P. A.: Gluing copulas.Comm. Statist. A – Theory Methods 37 (2008), 3124–3134 MR 2467756, 10.1080/03610920802074844 |
Reference:
|
[14] Sklar M.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600 |
. |