Previous |  Up |  Next

Article

References:
[1] ARHANGEĽSKIĬ A. V., FRANKLIN S. P.: New ordinal invariants for topological spaces. Michigan Math. J. 15 (1968), 313-320. MR 0240767
[2] BEATTIE R., BUTZMANN H.-P.: Sequentially determined convergence spaces. Czechoslovak Math. J. 37 (1987), 231-247. MR 0882596 | Zbl 0652.54001
[3] CONTESSA M., ZANOLIN F.: Example of a commutative convergence ring which has no completion. Boll. Un. Mat. Ital. A (5) 18 (1981), 467-472. MR 0633683 | Zbl 0466.54001
[4] DIKRANJAN D.: Non-completeness measure of convergence Abelian groups. In: General Topology and its Relations to Modern Analysis and Algebra VI. (Proc. Sixth. Prague Topological Sympos., 1986), Heldermann Verlag, Berlin, 1988, pp. 125-134. MR 0952600
[5] DIKRANJAN D., FRIČ R., ZANOLIN F.: On convergence groups with dense coarse subgroups. Czechoslovak Math. J. 37 (1987), 471-479. MR 0904771 | Zbl 0637.22002
[6] FRIČ R.: Rational with exotic convergences. Math. Slovaca 39 (1989), 141-147. MR 1018255
[7] FRIČ R., KENT D. C.: Completion of pseudo-topological groups. Math. Nachr. 99 (1980), 99-103. MR 0637649 | Zbl 0477.22001
[8] FRIČ R., KOUTNÍK V.: Completions of convergence groups. In:General Topology and its Relations to Modern Analysis and Algebra VI. (Proc. Sixth. Prague Topological Sympos., 1986), Heldermann Verlag, Berlin, 1988, pp. 187-201. MR 0952605
[9] FRIČ R., ZANOLIN F.: A convergence group having no completion. In: Convergence Structures and Applications, II. (Proc. Schwerin Conference) Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik 2 1984, Akademie-Verlag, Berlin, 1984, pp. 47-48. MR 0790151
[10] FRIČ R., ZANOLIN F.: Coarse convergence groups. In: Convergence Structures 1884. (Proc. Conf. on Convergence, Bechyně 1984), Akademie-Verlag, Berlin, 1985, pp. 107-114. MR 0835476
[11] FRIČ R., ZANOLIN F.: Coarse sequential convergence in groups. etc., Czechoslovak Math. J. 40 (1990), 459-467. MR 1065025 | Zbl 0747.54002
[12] GRECO G. H.: The sequential defect of the cross topology is ω1. Topology Appl. 19 (1985), 91-94. MR 0786084
[13] KANNAN V.: Ordinal invariants in topology. Mem. Amer. Math. Soc. 32 no. 245 (1981). MR 0617500 | Zbl 0473.54001
[14] KNEIS G.: Eine allgemeine Theorie der Vervollstandigung und Čech-Stone-Kompaktifizierung. (Dr. Sc. Nat. Dissertation), Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, 1983.
[15] KNEIS G.: Completion of sequential convergence groups. In: Proc. Conf. Topology and Measure IV, Greifswald 1984, Part 1. Wiss. Beitr. der Ernst-Moritz-Arnd Universität Greifswald, pp. 125-132. MR 0824015 | Zbl 0579.54004
[16] KOUTNÍK V.: Completeness of sequential convergence groups. Studia Math. 77 (1984), 454-464. MR 0751766 | Zbl 0546.54006
[17] KOUTNÍK V., NOVÁK J.: Completion of a class of convergence rings. (To appear).
[18] NOVÁK J.: On convergence spaces and their sequential envelopes. Czechoslovak Math. J. 15 (1965), 74-100. MR 0175083
[19] NOVÁK J.: On completions of convergence commutative groups. In: General Topology and its Relations to Modern Analysis and Algebra III. (Proc. Third Prague Topological Sympos., 1971), Academia, Praha, 1972, pp. 335-340. MR 0365451
Partner of
EuDML logo