Previous |  Up |  Next

Article

Title: On the sequential order (English)
Author: Frič, Roman
Author: Gerlits, János
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 42
Issue: 4
Year: 1992
Pages: 505-512
.
Category: math
.
MSC: 54A20
MSC: 54H99
idZBL: Zbl 0776.54004
idMR: MR1195044
.
Date available: 2009-09-25T10:42:56Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136564
.
Reference: [1] ARHANGEĽSKIĬ A. V., FRANKLIN S. P.: New ordinal invariants for topological spaces.Michigan Math. J. 15 (1968), 313-320. MR 0240767
Reference: [2] BEATTIE R., BUTZMANN H.-P.: Sequentially determined convergence spaces.Czechoslovak Math. J. 37 (1987), 231-247. Zbl 0652.54001, MR 0882596
Reference: [3] CONTESSA M., ZANOLIN F.: Example of a commutative convergence ring which has no completion.Boll. Un. Mat. Ital. A (5) 18 (1981), 467-472. Zbl 0466.54001, MR 0633683
Reference: [4] DIKRANJAN D.: Non-completeness measure of convergence Abelian groups.In: General Topology and its Relations to Modern Analysis and Algebra VI. (Proc. Sixth. Prague Topological Sympos., 1986), Heldermann Verlag, Berlin, 1988, pp. 125-134. MR 0952600
Reference: [5] DIKRANJAN D., FRIČ R., ZANOLIN F.: On convergence groups with dense coarse subgroups.Czechoslovak Math. J. 37 (1987), 471-479. Zbl 0637.22002, MR 0904771
Reference: [6] FRIČ R.: Rational with exotic convergences.Math. Slovaca 39 (1989), 141-147. MR 1018255
Reference: [7] FRIČ R., KENT D. C.: Completion of pseudo-topological groups.Math. Nachr. 99 (1980), 99-103. Zbl 0477.22001, MR 0637649
Reference: [8] FRIČ R., KOUTNÍK V.: Completions of convergence groups.In:General Topology and its Relations to Modern Analysis and Algebra VI. (Proc. Sixth. Prague Topological Sympos., 1986), Heldermann Verlag, Berlin, 1988, pp. 187-201. MR 0952605
Reference: [9] FRIČ R., ZANOLIN F.: A convergence group having no completion.In: Convergence Structures and Applications, II. (Proc. Schwerin Conference) Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik 2 1984, Akademie-Verlag, Berlin, 1984, pp. 47-48. MR 0790151
Reference: [10] FRIČ R., ZANOLIN F.: Coarse convergence groups.In: Convergence Structures 1884. (Proc. Conf. on Convergence, Bechyně 1984), Akademie-Verlag, Berlin, 1985, pp. 107-114. MR 0835476
Reference: [11] FRIČ R., ZANOLIN F.: Coarse sequential convergence in groups.etc., Czechoslovak Math. J. 40 (1990), 459-467. Zbl 0747.54002, MR 1065025
Reference: [12] GRECO G. H.: The sequential defect of the cross topology is ω1.Topology Appl. 19 (1985), 91-94. MR 0786084
Reference: [13] KANNAN V.: Ordinal invariants in topology.Mem. Amer. Math. Soc. 32 no. 245 (1981). Zbl 0473.54001, MR 0617500
Reference: [14] KNEIS G.: Eine allgemeine Theorie der Vervollstandigung und Čech-Stone-Kompaktifizierung.(Dr. Sc. Nat. Dissertation), Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, 1983.
Reference: [15] KNEIS G.: Completion of sequential convergence groups.In: Proc. Conf. Topology and Measure IV, Greifswald 1984, Part 1. Wiss. Beitr. der Ernst-Moritz-Arnd Universität Greifswald, pp. 125-132. Zbl 0579.54004, MR 0824015
Reference: [16] KOUTNÍK V.: Completeness of sequential convergence groups.Studia Math. 77 (1984), 454-464. Zbl 0546.54006, MR 0751766
Reference: [17] KOUTNÍK V., NOVÁK J.: Completion of a class of convergence rings.(To appear).
Reference: [18] NOVÁK J.: On convergence spaces and their sequential envelopes.Czechoslovak Math. J. 15 (1965), 74-100. MR 0175083
Reference: [19] NOVÁK J.: On completions of convergence commutative groups.In: General Topology and its Relations to Modern Analysis and Algebra III. (Proc. Third Prague Topological Sympos., 1971), Academia, Praha, 1972, pp. 335-340. MR 0365451
.

Files

Files Size Format View
MathSlov_42-1992-4_13.pdf 495.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo