Previous |  Up |  Next

Article

Title: On bicritical snarks (English)
Author: Steffen, Eckhard
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 51
Issue: 2
Year: 2001
Pages: 141-150
.
Category: math
.
MSC: 05C15
idZBL: Zbl 0985.05022
idMR: MR1841443
.
Date available: 2009-09-25T11:50:18Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136800
.
Reference: [1] BRINKMANN G.-STEFFEN E.: Snarks and reducibility.Ars Combin. 50 (1998), 292-296. Zbl 0963.05050, MR 1670597
Reference: [2] CAMERON P. J.-CHETWYND A. G.-WATKINS J. J.: Decomposition of snarks.J. Graph Theory 11 (1987), 13-19. Zbl 0612.05030, MR 0876199
Reference: [3] FIORINI S.: Hypohamiltonian snarks.In: Graphs and Other Combinatorial Topics (M. Fiedler, ed.), Teubner-Texte Math. 59, Teubner, Leipzig, 1983, pp. 70-75. Zbl 0535.05045, MR 0737016
Reference: [4] GOLDBERG M. K.: Construction of class 2 graphs with maximum vertex degree 3.J. Combin. Theory Ser. B 31 (1981), 282-291. MR 0638284
Reference: [5] ISAACS R.: Infinite families of non-trivial trivalent graphs which are not Tait colorable.Amer. Math. Monthly 82 (1975), 221-239. MR 0382052
Reference: [6] NEDELA R.-ŠKOVIERA M.: Decompositions and reductions of snarks.J. Graph Theory 22 (1996), 253-279. Zbl 0856.05082, MR 1394327
Reference: [7] ŠKOVIERA M.: Dipoles and the existence of irreduciЫe snarks.(In preparation).
Reference: [8] STEFFEN E.: Classifications and characterizations of snarks.Discrete Math. 188 (1998), 183-203. MR 1630478
Reference: [9] WATKINS J. J.-WILSON R. J.: A Survey of snarks.In: Graph Theory, Combinatorics and Applications (Y. Alavi et al., eds.), Wiley, New York, 1991, pp. 1129-1144. Zbl 0841.05035, MR 1170851
.

Files

Files Size Format View
MathSlov_51-2001-2_2.pdf 617.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo