Previous |  Up |  Next

Article

Title: About remainders in compactifications of homogeneous spaces (English)
Author: Basile, D.
Author: Bella, A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 4
Year: 2009
Pages: 607-613
Summary lang: English
.
Category: math
.
Summary: We prove a dichotomy theorem for remainders in compactifications of homogeneous spaces: given a homogeneous space $X$, every remainder of $X$ is either realcompact and meager or Baire. In addition we show that two other recent dichotomy theorems for remainders of topological groups due to Arhangel'skii cannot be extended to homogeneous spaces. (English)
Keyword: remainders in compactifications
Keyword: homogeneous spaces
MSC: 54A25
MSC: 54D35
MSC: 54D40
MSC: 54E52
idZBL: Zbl 1212.54087
idMR: MR2583137
.
Date available: 2009-12-22T10:04:38Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137450
.
Reference: [1] Arhangel'skii A.V.: Bicompact sets and the topology of spaces.Dokl. Akad. Nauk SSSR 150 (1963), 9--12; MR MR0150733 (27 \#720). MR 0150733
Reference: [2] Arhangel'skii A.V.: Two types of remainders of topological groups.Comment. Math. Univ. Carolin. 49 (2008), no. 1, 119--126. MR 2433629
Reference: [3] Arhangel'skii A.V.: The Baire property in remainders of topological groups and other results.Comment. Math. Univ. Carolin. 50 (2009), no. 2, 273--279. MR 2537836
Reference: [4] Basile D., van Mill J.: A homogeneous space of point-countable type but not of countable type.Comment. Math. Univ. Carolin. 48 (2007), 459--463. MR 2374127
Reference: [5] Basile D., van Mill J., Ridderbos G.J.: Sum theorems for Ohio completness.Colloq. Math. 113 (2008), 91--104. MR 2399666, 10.4064/cm113-1-6
Reference: [6] Dow A., Pearl E.: Homogeneity in powers of zero-dimensional first-countable spaces.Proc. Amer. Math. Soc. 125 (1997), no. 8, 2503--2510. Zbl 0963.54002, MR 1416083, 10.1090/S0002-9939-97-03998-1
Reference: [7] Engelking R.: General Topology.second ed., Heldermann, Berlin, 1989; MR MR2259500. Zbl 0684.54001, MR 1039321
Reference: [8] Gerlits J., Juhász I., Szentmiklóssy Z.: Two improvements on Tkačenko's addition theorem.Comment. Math. Univ. Carolin. 46 (2005), no. 4, 705--710; MR MR2259500 (2008f:54035). Zbl 1121.54041, MR 2259500
Reference: [9] Henriksen M., Isbell J.R.: Some properties of compactifications.Duke Math. J. 25 (1957), 83--105. Zbl 0081.38604, MR 0096196, 10.1215/S0012-7094-58-02509-2
Reference: [10] Ismail M.: Cardinal functions of homogeneous spaces and topological groups.Math. Japon. 26 (1981), no. 6, 635--646; MR MR649371 (83g:54003). Zbl 0479.54003, MR 0649371
Reference: [11] Juhász I.: Cardinal functions in topology --- ten years later.second ed., Mathematical Centre Tracts, 123, Mathematisch Centrum, Amsterdam, 1980; MR MR 576927 (82a:54002). MR 0576927
Reference: [12] Šapirovskii B.E.: $\pi $-character and $\pi $-weight in bicompacta.Dokl. Akad. Nauk SSSR 223 (1975), no. 4, 799--802; MR MR 04110632 (53 \#14380). MR 0410632
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-4_10.pdf 210.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo