Previous |  Up |  Next


pointwise convergence; Lindelöf property
We study relations between the Lindelöf property in the spaces of continuous functions with the topology of pointwise convergence over a Tychonoff space and over its subspaces. We prove, in particular, the following: a) if $C_p(X)$ is Lindelöf, $Y=X\cup\{p\}$, and the point $p$ has countable character in $Y$, then $C_p(Y)$ is Lindelöf; b) if $Y$ is a cozero subspace of a Tychonoff space $X$, then $l(C_p(Y)^\omega)\le l(C_p(X)^\omega)$ and $\operatorname{ext}(C_p(Y)^\omega)\le \operatorname{ext}(C_p(X)^\omega)$.
[Ar1] Arhangel'skii A.V.: On linear topological and topological classification of spaces $C_p(X)$. Zb. Rad. 3 (1989), 3--12. MR 1017630
[Arh2] Arhangel'skii A.V.: Topological Function Spaces. Kluwer Acad. Publ. Dordrecht (1992). MR 1485266
[Buz] Buzyakova R.Z.: How sensitive is $C_p(X,Y)$ to changes in $X$ and/or $Y$?. Comment. Math. Univ. Carolin. 49 4 (2008), 657--665. MR 2493945 | Zbl 1212.54051
[Eng] Engelking R.: General Topology. Sigma Series in Pure Mathematics, 6, Helderman, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[KOS] Kubiš W., Okunev O., Szeptycki P.J.: On some classes of Lindelöf$\Sigma$-spaces. Topology Appl. 153 (2006), 2574--2590. DOI 10.1016/j.topol.2005.09.009 | MR 2243735 | Zbl 1102.54028
[Oku] Okunev O.: On Lindelöf $\Sigma$-spaces of continuous functions in the pointwise topology. Topology Appl. 49 (1993), 149--166. DOI 10.1016/0166-8641(93)90041-B | MR 1206222 | Zbl 0796.54026
[Pol] Pol R.: A theorem on the weak topology of $C(X)$ for compact scattered $X$. Fund. Math. 106 2 (1980), 135--140. MR 0580591 | Zbl 0444.54010
[RJ] Rogers A., Jayne E. (Eds.): Analytic Sets. Academic Press, London, 1980. Zbl 0589.54047
Partner of
EuDML logo