Previous |  Up |  Next

Article

Title: On the Lindelöf property of spaces of continuous functions over a Tychonoff space and its subspaces (English)
Author: Okunev, Oleg
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 4
Year: 2009
Pages: 629-635
Summary lang: English
.
Category: math
.
Summary: We study relations between the Lindelöf property in the spaces of continuous functions with the topology of pointwise convergence over a Tychonoff space and over its subspaces. We prove, in particular, the following: a) if $C_p(X)$ is Lindelöf, $Y=X\cup\{p\}$, and the point $p$ has countable character in $Y$, then $C_p(Y)$ is Lindelöf; b) if $Y$ is a cozero subspace of a Tychonoff space $X$, then $l(C_p(Y)^\omega)\le l(C_p(X)^\omega)$ and $\operatorname{ext}(C_p(Y)^\omega)\le \operatorname{ext}(C_p(X)^\omega)$. (English)
Keyword: pointwise convergence
Keyword: Lindelöf property
MSC: 54C35
MSC: 54D20
idZBL: Zbl 1212.54052
idMR: MR2583139
.
Date available: 2009-12-22T10:05:06Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137452
.
Reference: [Ar1] Arhangel'skii A.V.: On linear topological and topological classification of spaces $C_p(X)$.Zb. Rad. 3 (1989), 3--12. MR 1017630
Reference: [Arh2] Arhangel'skii A.V.: Topological Function Spaces.Kluwer Acad. Publ. Dordrecht (1992). MR 1485266
Reference: [Buz] Buzyakova R.Z.: How sensitive is $C_p(X,Y)$ to changes in $X$ and/or $Y$?.Comment. Math. Univ. Carolin. 49 4 (2008), 657--665. Zbl 1212.54051, MR 2493945
Reference: [Eng] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Helderman, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [KOS] Kubiš W., Okunev O., Szeptycki P.J.: On some classes of Lindelöf$\Sigma$-spaces.Topology Appl. 153 (2006), 2574--2590. Zbl 1102.54028, MR 2243735, 10.1016/j.topol.2005.09.009
Reference: [Oku] Okunev O.: On Lindelöf $\Sigma$-spaces of continuous functions in the pointwise topology.Topology Appl. 49 (1993), 149--166. Zbl 0796.54026, MR 1206222, 10.1016/0166-8641(93)90041-B
Reference: [Pol] Pol R.: A theorem on the weak topology of $C(X)$ for compact scattered $X$.Fund. Math. 106 2 (1980), 135--140. Zbl 0444.54010, MR 0580591
Reference: [RJ] Rogers A., Jayne E. (Eds.): Analytic Sets.Academic Press, London, 1980. Zbl 0589.54047
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-4_12.pdf 198.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo