Previous |  Up |  Next

Article

Title: On the measurability of sets of pairs of intersecting nonisotropic straight lines of type beta in the simply isotropic space (English)
Author: Borisov, Adrijan Varbanov
Author: Spirova, Margarita Georgieva
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 48
Issue: 1
Year: 2009
Pages: 7-16
Summary lang: English
.
Category: math
.
Summary: The measurable sets of pairs of intersecting non-isotropic straight lines of type $\beta $ and the corresponding densities with respect to the group of general similitudes and some its subgroups are described. Also some Crofton-type formulas are presented. (English)
Keyword: Simply isotropic space
Keyword: density
Keyword: measurability
MSC: 28A75
MSC: 52A22
MSC: 53C65
idZBL: Zbl 1203.53072
idMR: MR2641943
.
Date available: 2010-02-11T13:47:30Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/137502
.
Reference: [1] Borisov, A.: Integral geometry in the Galilean plane.Research work qualifying for a degree full-professor, Sofia, 1998.
Reference: [2] Borisov, A. V., Spirova, M. G.: Crofton-type formulas relating sets of pairs of intersecting nonisotropic straight lines in the simply isotropic space.Tensor 67 (2006), 243–253. MR 2361199
Reference: [3] Deltheil, R.: Sur la théorie des probabilité géométriques.Thése Ann. Fac. Sc. Univ. Toulouse 11 (1919), 1–65. MR 1508362
Reference: [4] Drinfel’d, G. I.: On the measure of the Lie groups.Zap. Mat. Otdel. Fiz. Mat. Fak. Kharkov. Mat. Obsc. 21 (1949), 47–57 (in Russian). MR 0082632
Reference: [5] Drinfel’d, G. I., Lucenko, A. V.: On the measure of sets of geometric elements.Vest. Kharkov. Univ. 31, 3 (1964), 34–41 (in Russian). MR 0196037
Reference: [6] Lucenko, A. V.: On the measure of sets of geometric elements and thear subsets.Ukrain. Geom. Sb. 1, 3 (1965), 39–57 (in Russian). MR 0213983
Reference: [7] Sachs, H.: Ebene isotrope Geometrie.Friedr. Vieweg and Sohn, Braunschweig, 1987. Zbl 0625.51001, MR 0908294
Reference: [8] Sachs, H.: Isotrope Geometrie des Raumes.Friedr. Vieweg and Sohn, Braunschweig–Wiesbaden, 1990. Zbl 0703.51001, MR 1059891
Reference: [9] Santaló, L. A., London: Integral Geometry and Geometric Probability.Addison-Wesley, London, 1976. MR 0433364
Reference: [10] Stoka, M. I.: Geometrie Integrala.Ed. Acad. RPR, Bucuresti, 1967. MR 0217747
Reference: [11] Strubecker, K.: Differentialgeometrie des isotropen Raumes I.Sitzungsber. Österr. Akad. Wiss. Wien 150 (1941), 1–53. MR 0018957
Reference: [12] Strubecker, K.: Differentialgeometrie des isotropen Raumes II, III, IV, V.. Math. Z. 52 (1949), 525–573. MR 0029201
.

Files

Files Size Format View
ActaOlom_48-2009-1_1.pdf 237.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo