Previous |  Up |  Next

Article

Title: Conjugated algebras (English)
Author: Chajda, Ivan
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 48
Issue: 1
Year: 2009
Pages: 17-23
Summary lang: English
.
Category: math
.
Summary: We generalize the correspondence between basic algebras and lattices with section antitone involutions to a more general case where no lattice properties are assumed. These algebras are called conjugated if this correspondence is one-to-one. We get conditions for the conjugary of such algebras and introduce the induced relation. Necessary and sufficient conditions are given to indicated when the induced relation is a quasiorder which has “nice properties", e.g. the unary operations are antitone involutions on the corresponding intervals. (English)
Keyword: Conjugated algebras
Keyword: basic algebra
Keyword: section antitone involution
Keyword: quasiorder
MSC: 06A12
MSC: 06D35
MSC: 08A40
idZBL: Zbl 1195.08002
idMR: MR2641944
.
Date available: 2010-02-11T13:53:44Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/137507
.
Reference: [1] Chajda, I.: Lattices and semilattices having an antitone involution in every upper interval.Comment. Math. Univ. Carol. 44 (2003), 577–585. Zbl 1101.06003, MR 2062874
Reference: [2] Chajda, I., Emanovský, P.: Bounded lattices with antitone involutions and properties of MV-algebras.Discuss. Math., Gener. Algebra and Appl. 24 (2004), 31–42. Zbl 1082.03055, MR 2117673
Reference: [3] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures.Heldermann Verlag, Lemgo, 2007. Zbl 1117.06001, MR 2326262
Reference: [4] Chajda, I., Kühr, J.: A non-associative generalization of MV-algebras.Math. Slovaca 57 (2007), 1–12. Zbl 1150.06012, MR 2357826
Reference: [5] Cignoli, R. L. O., D’Ottaviano, M. L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning.Kluwer Acad. Publ., Dordrecht, 2000. MR 1786097
Reference: [6] Halaš, R., Plojhar, L.: Weak MV-algebras.Math. Slovaca 58 (2008), 1–10. Zbl 1174.06009, MR 2399238
.

Files

Files Size Format View
ActaOlom_48-2009-1_2.pdf 189.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo