Previous |  Up |  Next

Article

Title: Some stability results in complete metric space (English)
Author: Olatinwo, Memudu Olaposi
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 48
Issue: 1
Year: 2009
Pages: 83-92
Summary lang: English
.
Category: math
.
Summary: In this paper, we obtain some stability results for the Picard iteration process for one and two metrics in complete metric space by using different contractive definitions which are more general than those of Berinde [Berinde, V.: On the stability of some fixed point procedures. Bul. Stiint. Univ. Baia Mare, Ser. B, Matematica–Informatica 18, 1 (2002), 7–14.], Imoru and Olatinwo [Imoru, C. O., Olatinwo, M. O.: On the stability of Picard and Mann iteration processes. Carpathian J. Math. 19, 2 (2003), 155–160.] some others listed in the reference section. The results generalize and unify some of the results of Harder and Hicks [Harder, A. M., Hicks, T. L.: Stability results for fixed point iteration procedures. Math. Japonica 33, 5 (1988), 693–706.], Rhoades [Rhoades, B. E.: Fixed point theorems and stability results for fixed point iteration procedures. Indian J. Pure Appl. Math. 21, 1 (1990), 1–9.], [Rhoades, B. E.: Fixed point theorems and stability results for fixed point iteration procedures II. Indian J. Pure Appl. Math. 24, 11 (1993), 691–703.], Osilike [Osilike, M. O.: Some stability results for fixed point iteration procedures. J. Nigerian Math. Soc. Vol. 14/15 (1995), 17–29.], Berinde [Berinde, V.: On the stability of some fixed point procedures. Bul. Stiint. Univ. Baia Mare, Ser. B, Matematica–Informatica 18, 1 (2002), 7–14.], Imoru and Olatinwo [Imoru, C. O., Olatinwo, M. O.: On the stability of Picard and Mann iteration processes. Carpathian J. Math. 19, 2 (2003), 155–160.] as well as Imoru et al [Imoru, C. O., Olatinwo, M. O., Owojori, O. O.: On the stability of Picard and Mann iteration procedures. J. Appl. Func. Diff. Eqns. 1, 1 (2006), 71–80.]. (English)
Keyword: Stability results
Keyword: Picard and Mann iteration processes
MSC: 47H06
MSC: 54H25
idZBL: Zbl 1199.54232
idMR: MR2641950
.
Date available: 2010-02-11T13:56:49Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/137516
.
Reference: [1] Berinde, V.: On the stability of some fixed point procedures.Bul. Stiint. Univ. Baia Mare, Ser. B, Matematica–Informatica 18, 1 (2002), 7–14. Zbl 1031.47030, MR 2014277
Reference: [2] Berinde, V.: Iterative Approximation of Fixed Points.Editura Efemeride, Baia Mare, Romania, 2002. Zbl 1036.47037, MR 1995230
Reference: [3] Berinde, V.: A priori and a posteriori error estimates for a class of $\varphi $-contractions.Bulletins for Applied Mathematics 90-B (1999), 183–192.
Reference: [4] Harder, A. M., Hicks, T. L.: Stability results for fixed point iteration procedures.Math. Japonica 33, 5 (1988), 693–706. Zbl 0655.47045, MR 0972379
Reference: [5] Imoru, C. O., Olatinwo, M. O.: On the stability of Picard and Mann iteration processes.Carpathian J. Math. 19, 2 (2003), 155–160. Zbl 1086.47512, MR 2069844
Reference: [6] Imoru, C. O., Olatinwo, M. O., Owojori, O. O.: On the stability of Picard and Mann iteration procedures.J. Appl. Func. Diff. Eqns. 1, 1 (2006), 71–80. MR 2293939
Reference: [7] Jachymski, J. R.: An extension of A. Ostrowski’s theorem on the round-off stability of iterations.Aequationes Math. 53 (1997), 242–253. Zbl 0885.47023, MR 1444177
Reference: [8] Osilike, M. O.: Some stability results for fixed point iteration procedures.J. Nigerian Math. Soc. Vol. 14/15 (1995), 17–29. MR 1775011
Reference: [9] Osilike, M. O., Udomene, A.: Short proofs of stability results for fixed point iteration procedures for a class of contractive-type mappings.Indian J. Pure Appl. Math. 30, 12 (1999), 1229–1234. Zbl 0955.47038, MR 1729212
Reference: [10] Rhoades, B. E.: Fixed point theorems and stability results for fixed point iteration procedures.. Indian J. Pure Appl. Math. 21, 1 (1990), 1–9. Zbl 0692.54027, MR 1048010
Reference: [11] Rhoades, B. E.: Some fixed point iteration procedures.Internat. J. Math. and Math. Sci. 14, 1 (1991), 1–16. Zbl 0716.47030
Reference: [12] Rhoades, B. E.: Fixed point theorems and stability results for fixed point iteration procedures II.Indian J. Pure Appl. Math. 24, 11 (1993), 691–703. Zbl 0794.54048, MR 1251180
Reference: [13] Singh, S. L., Bhatnagar, C., Mishra, S. N.: Stability of Jungck-type iterative procedures.Internat. J. Math. & Math. Sc. 19 (2005), 3035–3043. Zbl 1117.26005, MR 2206082
Reference: [14] Zeidler, E.: Nonlinear Functional Analysis and its Applications, Fixed-Point Theorems I.Springer-Verlag, New York, 1986. MR 0816732
.

Files

Files Size Format View
ActaOlom_48-2009-1_8.pdf 232.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo