Title:
|
Classes of filters in generalizations of commutative fuzzy structures (English) |
Author:
|
Rachůnek, Jiří |
Author:
|
Šalounová, Dana |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
48 |
Issue:
|
1 |
Year:
|
2009 |
Pages:
|
93-107 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of $\mathit {BL}$-algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative $R\ell $-monoids. (English) |
Keyword:
|
Residuated $\ell $-monoid |
Keyword:
|
deductive system |
Keyword:
|
$\mathit {BL}$-algebra |
Keyword:
|
$\mathit {MV}$-algebra |
Keyword:
|
Heyting algebra |
Keyword:
|
filter |
MSC:
|
03G25 |
MSC:
|
06D35 |
MSC:
|
06F05 |
idZBL:
|
Zbl 1203.03091 |
idMR:
|
MR2641951 |
. |
Date available:
|
2010-02-11T13:57:31Z |
Last updated:
|
2012-05-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/137511 |
. |
Reference:
|
[1] Balbes, R., Dwinger, P.: Distributive Lattices.Univ. of Missouri Press, Columbia, Missouri, 1974. Zbl 0321.06012, MR 0373985 |
Reference:
|
[2] Cignoli, R., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning.Kluwer Acad. Publ., Dordrecht, 2000. MR 1786097 |
Reference:
|
[3] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded commutative residuated $\ell $-monoids.Discrete Mathematics 306 (2006), 1317–1326. Zbl 1105.06011, MR 2237716 |
Reference:
|
[4] Font, J. M., Rodriguez, A. J., Torrens, A.: Wajsberg algebras.Stochastica 8 (1984), 5–31. Zbl 0557.03040, MR 0780136 |
Reference:
|
[5] Hájek, P.: Metamathematics of Fuzzy Logic.Kluwer Acad. Publ., Dordrecht, 1998. MR 1900263 |
Reference:
|
[6] Hájek, P.: Basic fuzzy logic and BL-algebras.Soft Comput. 2 (1998), 124–128. |
Reference:
|
[7] Haveshki, M., Saeid, A. B., Eslami, E.: Some types of filters in $\mathit {BL}$-algebras.Soft Comput 10 (2006), 657–664. |
Reference:
|
[8] Iorgulescu, A.: Classes of BCK algebras – Part I.Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 1/2004, 1–33. MR 2099263 |
Reference:
|
[9] Iorgulescu, A.: Classes of BCK algebras – Part III.Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 3/2004, 1–37. MR 2099263 |
Reference:
|
[10] Jipsen, P., Tsinakis, C.: A survey of residuated lattices.In: J. Martinez, (ed.): Ordered algebraic structures. Kluwer Acad. Publ., Dordrecht, 2002, 19–56. Zbl 1070.06005, MR 2083033 |
Reference:
|
[11] Kondo, M., Dudek, W. A.: Filter theory of $\mathit {BL}$-algebras.Soft Comput. 12 (2008), 419–423. |
Reference:
|
[12] Rachůnek, J.: $\mathit {MV}$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$-semigroups.Math. Bohemica 123 (1998), 437–441. MR 1667115 |
Reference:
|
[13] Rachůnek, J.: A duality between algebras of basic logic and bounded representable $DR\ell $-monoids.Math. Bohemica 126 (2001), 561–569. MR 1970259 |
Reference:
|
[14] Rachůnek, J., Šalounová, D.: Boolean deductive systems of bounded commutative residuated $\ell $-monoids.Contrib. Gen. Algebra 16 (2005), 199–208. Zbl 1081.06014 |
Reference:
|
[15] Rachůnek, J., Šalounová, D.: Local bounded commutative residuated $\ell $-monoids.Czechoslovak Math. J. 57 (2007), 395–406. Zbl 1174.06331, MR 2309973 |
Reference:
|
[16] Rachůnek, J., Slezák, V.: Negation in bounded commutative $DR\ell $-monoids.Czechoslovak Math. J. 56 (2006), 755–763. Zbl 1164.06325 |
Reference:
|
[17] Rachůnek, J., Slezák, V.: Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures.Math. Slovaca 56 (2006), 223–233. Zbl 1150.06015, MR 2229343 |
Reference:
|
[18] Swamy, K. L. N.: Dually residuated lattice ordered semigroups III.Math. Ann. 167 (1966), 71–74. Zbl 0158.02601, MR 0200364 |
Reference:
|
[19] Turunen, E.: Boolean deductive systems of $BL$-algebras.Arch. Math. Logic 40 (2001), 467–473. Zbl 1030.03048, MR 1854896 |
. |