Previous |  Up |  Next

Article

Title: Classes of filters in generalizations of commutative fuzzy structures (English)
Author: Rachůnek, Jiří
Author: Šalounová, Dana
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 48
Issue: 1
Year: 2009
Pages: 93-107
Summary lang: English
.
Category: math
.
Summary: Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of $\mathit {BL}$-algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative $R\ell $-monoids. (English)
Keyword: Residuated $\ell $-monoid
Keyword: deductive system
Keyword: $\mathit {BL}$-algebra
Keyword: $\mathit {MV}$-algebra
Keyword: Heyting algebra
Keyword: filter
MSC: 03G25
MSC: 06D35
MSC: 06F05
idZBL: Zbl 1203.03091
idMR: MR2641951
.
Date available: 2010-02-11T13:57:31Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/137511
.
Reference: [1] Balbes, R., Dwinger, P.: Distributive Lattices.Univ. of Missouri Press, Columbia, Missouri, 1974. Zbl 0321.06012, MR 0373985
Reference: [2] Cignoli, R., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning.Kluwer Acad. Publ., Dordrecht, 2000. MR 1786097
Reference: [3] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded commutative residuated $\ell $-monoids.Discrete Mathematics 306 (2006), 1317–1326. Zbl 1105.06011, MR 2237716
Reference: [4] Font, J. M., Rodriguez, A. J., Torrens, A.: Wajsberg algebras.Stochastica 8 (1984), 5–31. Zbl 0557.03040, MR 0780136
Reference: [5] Hájek, P.: Metamathematics of Fuzzy Logic.Kluwer Acad. Publ., Dordrecht, 1998. MR 1900263
Reference: [6] Hájek, P.: Basic fuzzy logic and BL-algebras.Soft Comput. 2 (1998), 124–128.
Reference: [7] Haveshki, M., Saeid, A. B., Eslami, E.: Some types of filters in $\mathit {BL}$-algebras.Soft Comput 10 (2006), 657–664.
Reference: [8] Iorgulescu, A.: Classes of BCK algebras – Part I.Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 1/2004, 1–33. MR 2099263
Reference: [9] Iorgulescu, A.: Classes of BCK algebras – Part III.Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 3/2004, 1–37. MR 2099263
Reference: [10] Jipsen, P., Tsinakis, C.: A survey of residuated lattices.In: J. Martinez, (ed.): Ordered algebraic structures. Kluwer Acad. Publ., Dordrecht, 2002, 19–56. Zbl 1070.06005, MR 2083033
Reference: [11] Kondo, M., Dudek, W. A.: Filter theory of $\mathit {BL}$-algebras.Soft Comput. 12 (2008), 419–423.
Reference: [12] Rachůnek, J.: $\mathit {MV}$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$-semigroups.Math. Bohemica 123 (1998), 437–441. MR 1667115
Reference: [13] Rachůnek, J.: A duality between algebras of basic logic and bounded representable $DR\ell $-monoids.Math. Bohemica 126 (2001), 561–569. MR 1970259
Reference: [14] Rachůnek, J., Šalounová, D.: Boolean deductive systems of bounded commutative residuated $\ell $-monoids.Contrib. Gen. Algebra 16 (2005), 199–208. Zbl 1081.06014
Reference: [15] Rachůnek, J., Šalounová, D.: Local bounded commutative residuated $\ell $-monoids.Czechoslovak Math. J. 57 (2007), 395–406. Zbl 1174.06331, MR 2309973
Reference: [16] Rachůnek, J., Slezák, V.: Negation in bounded commutative $DR\ell $-monoids.Czechoslovak Math. J. 56 (2006), 755–763. Zbl 1164.06325
Reference: [17] Rachůnek, J., Slezák, V.: Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures.Math. Slovaca 56 (2006), 223–233. Zbl 1150.06015, MR 2229343
Reference: [18] Swamy, K. L. N.: Dually residuated lattice ordered semigroups III.Math. Ann. 167 (1966), 71–74. Zbl 0158.02601, MR 0200364
Reference: [19] Turunen, E.: Boolean deductive systems of $BL$-algebras.Arch. Math. Logic 40 (2001), 467–473. Zbl 1030.03048, MR 1854896
.

Files

Files Size Format View
ActaOlom_48-2009-1_9.pdf 262.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo