Previous |  Up |  Next

Article

Title: Singular problems on the half-line (English)
Author: Rachůnková, Irena
Author: Tomeček, Jan
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 48
Issue: 1
Year: 2009
Pages: 109-128
Summary lang: English
.
Category: math
.
Summary: The paper investigates singular nonlinear problems arising in hydrodynamics. In particular, it deals with the problem on the half-line of the form \[(p(t)u^{\prime }(t))^{\prime } = p(t)f(u(t)),\] \[u^{\prime }(0) = 0,\quad u(\infty ) = L.\] The existence of a strictly increasing solution (a homoclinic solution) of this problem is proved by the dynamical systems approach and the lower and upper functions method. (English)
Keyword: Singular ordinary differential equation of the second order
Keyword: lower and upper functions
Keyword: time singularities
Keyword: unbounded domain
Keyword: homoclinic solution
MSC: 34B16
MSC: 34B40
idZBL: Zbl 1209.34037
idMR: MR2641952
.
Date available: 2010-02-11T13:57:59Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/137518
.
Reference: [1] Berestycki, H., Lions, P. L., Peletier, L. A.: An ODE approach to the existence of positive solutions for semilinear problems in $\cal R^N$.Indiana University Mathematics Journal 30, 1 (1981), 141–157. MR 0600039
Reference: [2] Bonheure, D., Gomes, J. M., Sanchez, L.: Positive solutions of a second–order singular ordinary differential equation.Nonlinear Analysis 61 (2005), 1383–1399. Zbl 1109.34310, MR 2135816
Reference: [3] Dell’Isola, F., Gouin, H., Rotoli, G.: Nucleation of spherical shell-like interfaces by second gradient theory: numerical simulations.Eur. J. Mech B/Fluids 15 (1996), 545–568.
Reference: [4] Gouin, H., Rotoli, G.: An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids.Mech. Research Communic. 24 (1997), 255–260. Zbl 0899.76064
Reference: [5] Kitzhofer, G., Koch, O., Lima, P., Weinmüller, E.: Efficient numerical solution of the density profile equation in hydrodynamics.J. Sci. Comput. 32, 3 (2007), 411–424. Zbl 1179.76062, MR 2335787
Reference: [6] Koch, O., Kofler, P., Weinmüller, E.: Initial value problems for systems of ordinary first and second order differential equations with a singularity of the first kind.Analysis 21 (2001), 373–389. Zbl 1029.34002, MR 1867622
Reference: [7] Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I.: Analytical–numerical investigation of bubble-type solutions of nonlinear singular problems.J. Comp. Appl. Math. 189 (2006), 260–273. Zbl 1100.65066, MR 2202978
Reference: [8] Rachůnková, I., Koch, O., Pulverer, G., Weinmüller, E.: On a singular boundary value problem arising in the theory of shallow membrane caps.J. Math. Anal. Appl. 332 (2007), 532–541. Zbl 1118.34013, MR 2319681
.

Files

Files Size Format View
ActaOlom_48-2009-1_10.pdf 312.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo