Title:
|
Do nekonečna v konečném čase (Czech) |
Title:
|
Off to infinity in finite time (English) |
Author:
|
Saari, Donald G. |
Author:
|
Xia, Zhihong (Jeff) |
Language:
|
Czech |
Journal:
|
Pokroky matematiky, fyziky a astronomie |
ISSN:
|
0032-2423 |
Volume:
|
42 |
Issue:
|
2 |
Year:
|
1997 |
Pages:
|
90-102 |
. |
Category:
|
math |
. |
MSC:
|
70F10 |
MSC:
|
70F35 |
idZBL:
|
Zbl 0879.70009 |
Note:
|
Z Notices Amer. Math. Soc. 42 (1995), 538-546, přeložili M. Křížek a K. Segeth. (Czech) |
Note:
|
From Notices Amer. Math. Soc. 42 (1995), 538-546, translated by M. Křížek a K. Segeth. (English) |
. |
Date available:
|
2010-12-11T15:17:07Z |
Last updated:
|
2012-08-25 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/139786 |
. |
Reference:
|
[A] Anosov, D.: Smooth dynamical systems. Introductory article.Amer. Math. Soc. Transl. 125 (1985), 1–20. Zbl 0569.58025 |
Reference:
|
[Ch] Chazy, J.: Sur les singularités impossible du problème des $n$ corps.C. R. Acad. Sci. Paris 170 (1920), 575–577. |
Reference:
|
[D1] Devaney, R.: Triple collisions in the planar isosceles three-body problem.Invent. Math. 60 (1980), 249–267. MR 0586428 |
Reference:
|
[D2] Devaney, R.: Singularities in classical mechanical systems.Basel and Boston, MA, Birkhäuser 1981. Zbl 0467.70016, MR 0633766 |
Reference:
|
[G] Gerver, J.: The existence of pseudocollisions in the plane.J. Differential Equations 89 (1991), 1–68. Zbl 0721.70007, MR 1088334 |
Reference:
|
[L] Littlewood, J.: Some problems in real and complex analysis.Boston, MA, Heath 1969. MR 0244463 |
Reference:
|
[McG1] McGehee, R.: Von Zeipel’s theorem on singularities in celestial mechanics.Exposition. Math. 4 (1986), 335–345. Zbl 0622.70005, MR 0867962 |
Reference:
|
[McG2] McGehee, R.: Triple collisions in the collinear three-body problem.Invent. Math. 29 (1974), 191–227. MR 0359459 |
Reference:
|
[MM] Mather, J., McGehee, R.: Solutions of the collinear four-body problem which become unbounded in finite time.Lecture Notes Phys. 38 (1975), 573–597. Zbl 0331.70005, MR 0495348 |
Reference:
|
[Mo1] Moekel, R.: Orbits of the three-body problem which pass infinitely close to triple collision.Amer. J. Math. |
Reference:
|
[Mo2] Moekel, R.: Heteroclinic phenomena in the isosceles three-body problem.SIAM J. Math. Anal. 15 (1984). MR 0755848 |
Reference:
|
[MS] Marchal, C., Saari, D. G.: On the final evolution of the $n$-body problem.J. Differential Equations 20 (1976), 150–186. Zbl 0336.70010, MR 0416150 |
Reference:
|
[Pa] Painlevé, P.: Leçons sur la théorie analytic des équations différentielles.Paris, Hermann 1897. |
Reference:
|
[P1] Pollard, H.: A mathematical introduction to celestial mechanics.Carus Monograph No. 18, Math. Assoc. Amer. (1976). MR 0434057 |
Reference:
|
[P2] Pollard, H.: Gravitational systems.J. Math. Mech. 17 (1967), 601–612. Zbl 0159.26102, MR 0261826 |
Reference:
|
[PS1] Pollard, H., Saari, D. G.: Singularities of the $n$-body problem 1.Arch. Rational Mech. Math. 30 (1968), 263–269. MR 0231565 |
Reference:
|
[PS2] Pollard, H., Saari, D. G.: Singularities of the $n$-body problem 2.Academic Press 1970, 255–259. MR 0277853 |
Reference:
|
[R] Robinson, C.: Dynamical systems.Boca Raton, FL, CRC Press, Inc., 1995. Zbl 0853.58001, MR 1396532 |
Reference:
|
[S1] Saari, D. G.: Singularities of the Newtonian $n$-body problem.Ph. D. Dissertation, Purdue University 1967. |
Reference:
|
[S2] Saari, D. G.: Improbability of collisions in Newtonian gravitational systems II.Trans. Amer. Math. Soc. 181 (1973), 351–368. Zbl 0283.70007, MR 0321386 |
Reference:
|
[S3] Saari, D. G.: Singularities and collisions of Newtonian gravitational systems.Arch. Rational Mech. Math. 49 (1973), 311–320. Zbl 0253.70010, MR 0339596 |
Reference:
|
[S4] Saari, D. G.: A global existence theorem for the four-body problem of Newtonian mechanics.J. Differential Equations 26 (1977), 80–111. Zbl 0353.70008, MR 0478863 |
Reference:
|
[Se] Siegel, C. L.: Der Dreierstoss.Ann. of Math. 42 (1941), 127–168. Zbl 0024.36404, MR 0003736 |
Reference:
|
[Si] Simó, C.: Analysis of triple-collision in the isosceles problem.New York, Marcel Dekker 1980. MR 0640127 |
Reference:
|
[Sp] Sperling, H. J.: On the real singularities of the $n$-body problem.J. Reine Angew. Math. 245 (1970), 15–40. Zbl 0207.23301, MR 0290630 |
Reference:
|
[Su] Sundman, K.: Le problème des trois corps.Acta Soc. Sci. Fenn. 35 (1909). |
Reference:
|
[SX] Saari, D. G., Xia, Z.: Oscillatory and superhyperbolic solutions in Newtonian systems.J. Differential Equations 82 (1989), 342–355. MR 1027973 |
Reference:
|
[VZ] Zeipel, H. von: Sur les singularités du problème des $n$ corps.Ark. Mat. Astronom. Fys. 4 (1904). |
Reference:
|
[W] Wintner, A.: The analytical foundations of celestial mechanics.Princeton, NJ, Princeton University Press 1947. Zbl 0041.59006, MR 0005824 |
Reference:
|
[X1] Xia, Z.: The existence of non-collision singularities in Newtonian systems.Ph. D. Dissertation, Northwestern University 1988. |
Reference:
|
[X2] Xia, Z.: The existence of non-collision singularities in Newtonian systems.Ann. of Math. 135 (1992), 411–468. MR 1166640 |
. |