Full entry |
PDF
(0.7 MB)
Feedback

diffeomorphism; geometric structure; output feedback; immersion

References:

[1] S. Amari: **Differential geometry of a parametric family of invertible linear systems-Riemannian metric, dual affine connections, and divergence**. Math. Systems Theory 20 (1987), 53–83. MR 0901894 | Zbl 0632.93017

[2] A. Ben-Israel and T. N. E Greville: **Generalized Inverses**. Wiley, New York 1972.

[3] D. F. Delchamps: **Global structure of families of multivariable linear systems with an application to identification**. Math. Systems Theory 18 (1985), 329–380. MR 0818420

[4] A. Hotz and R. E. Skelton: **Covariance control theory**. Internat. J. Control 46 (1987), 13–32. MR 0895691

[5] P. S. Krishnaprasad: **Symplectic mechanics and rational functions**. Ricerche Automat. 10 (1979), 107–135. MR 0614258

[6] A. Ohara and T. Kitamori: **Geometric structures of stable state feedback systems**. IEEE Trans. Automat. Control 38 (1993), 1579–1583. MR 1242914

[7] A. Ohara and S. Amari: **Differential geometric structures of stable state feedback systems with dual connections**. Kybernetika 30 (1994), 369–386. MR 1303289

[8] A. Ohara, S. Nakazumi, and N. Suda: **Relations between a parametrization of Stabilizing state feedback gains and eigenvalue locations**. Systems Control Lett. 16 (1991), 261–266. MR 1102211

[9] A. Ohara, N. Suda, and S. Amari: **Dualistic Differential geometry of positive definite matrices and its applications to related problems**. Linear Algebra Appl. 247 (1996), 31–53. MR 1412739

[10] A. Ohara and T. Kitamori: **Robust stabilization for structurally perturbed plants by assigning a Lyapunov equation’s solution**. (In Japanese.) Trans. SICE 25 (1989), 682–689.

[11] F. Zhong, H. Sun, and Z. Zhang: **Geometric structures of stable time-variant state feedback systems**. J. Beijing Institute of Technology 16 (2007), 500–504. MR 2375866