Full entry |
PDF
(1.0 MB)
Feedback

uniform-time; compact; semisimple; reverse-system

References:

[1] V. Ayala and L. San Martin: **Controllability properties of a class of control systems on Lie groups**. Lectures Notes in Control and Inform. Sci. 1 (2001), 258, 83–92. MR 1806128

[2] V. Ayala and J. Tirao: **Linear control systems on Lie groups and controllability**. Amer. Math. Soc. Symposia in Pure Mathematics 64 (1999), 47–64. MR 1654529

[3] Domenico D’Alessandro: **Small time controllability of systems on compact Lie groups and spin angular momentum**. J. Math. Phys. 42 (2001) 9, 4488–4496. MR 1852638

[4] S. Helgason: **Differential Geometry, Lie groups and Symmetric Spaces**. Academic Press, New York 1978. MR 0514561 | Zbl 0993.53002

[5] V. Jurdjevic and H. J. Sussmann: **Controllability of nonlinear systems**. J. Differential Equations 12 (1972), 95–116. MR 0338882

[6] V. Jurdjevic and H. J. Sussmann: **Control systems on Lie groups**. J. Differential Equations 12 (1972), 313–329. MR 0331185

[7] H. Kunita: **Support of diffusion processes and controllability problems**. In: Proc. Internat. Symposium on Stochastic Differential Equations (K. Ito, ed.), Wiley, New York 1978, pp. 163–185. MR 0536011

[8] Y. Sachkov: **Control Theory on Lie Groups**. Lecture Notes SISSA, 2006.

[9] L. San Martin: **Algebras de Lie**. Editorial UNICAMP, Campinas, SP, 1999.

[10] F. Silva Leite: **Uniform controllable sets of left-invariant vector fields on compact Lie groups**. Systems Control Lett. 7 (1986), 213–216. MR 0847893 | Zbl 0598.93005

[11] F. Silva Leite: **Uniform controllable sets of left-invariant vector fields on non compact Lie groups**. Systems Control Letters 6 (1986), 329–335. MR 0821928

[12] F. W. Warner: **Foundations of Differential Manifolds and Lie Groups**. Scott Foreman, Glenview 1971. MR 0295244