Previous |  Up |  Next

Article

Title: On estimation of intrinsic volume densities of stationary random closed sets via parallel sets in the plane (English)
Author: Mrkvička, Tomáš
Author: Rataj, Jan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 6
Year: 2009
Pages: 931-945
Summary lang: English
.
Category: math
.
Summary: A method of estimation of intrinsic volume densities for stationary random closed sets in $\mathbb{R}^d$ based on estimating volumes of tiny collars has been introduced in T. Mrkvička and J. Rataj, On estimation of intrinsic volume densities of stationary random closed sets, Stoch. Proc. Appl. 118 (2008), 2, 213-231. In this note, a stronger asymptotic consistency is proved in dimension 2. The implementation of the method is discussed in detail. An important step is the determination of dilation radii in the discrete approximation, which differs from the standard techniques used for measuring parallel sets in image analysis. A method of reducing the bias is proposed and tested on simulated data. (English)
Keyword: random closed set
Keyword: convex ring
Keyword: curvature measure
Keyword: intrinsic volume
MSC: 60D05
MSC: 62G05
MSC: 62G07
MSC: 62G20
MSC: 65C60
idZBL: Zbl 1186.62050
idMR: MR2650074
.
Date available: 2010-06-02T19:25:09Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140028
.
Reference: [1] R. Klette, A. Rosenfeld: Digital Geometry.Elsevier, New York 2004. Zbl 1064.68090, MR 2095127
Reference: [2] T. Mrkvička, J. Rataj: On estimation of intrinsic volume densities of stationary random closed sets.Stoch. Proc. Appl. 118 (2008), 2, 213–231. MR 2376900, 10.1016/j.spa.2007.04.004
Reference: [3] T. Mrkvička: Estimation of intrinsic volume via parallel sets in plane and space.Inzynieria Materialowa 4 (2008), 392–395.
Reference: [4] X.-X. Nguyen, H. Zessin: Ergodic theorems for spatial processes.Z. Wahrsch. Verw. Gebiete 48 (1979), 133–158 Zbl 0397.60080, MR 0534841, 10.1007/BF01886869
Reference: [5] J. Ohser, F. Mücklich: Statistical Analysis of Microstructures in Materials Science.Wiley, Chichester 2000.
Reference: [6] J. Rataj: Estimation of intrinsic volumes from parallel neighbourhoods.Rend. Circ. Mat. Palermo, Ser. II, Suppl. 77 (2006), 553–563. Zbl 1101.62084, MR 2245722
Reference: [7] V. Schmidt, E. Spodarev: Joint estimators for the specific intrinsic volumes of stationary random sets.Stoch. Proc. Appl. 115 (2005), 959–981. Zbl 1075.60006, MR 2138810, 10.1016/j.spa.2004.12.007
Reference: [8] R. Schneider, W. Weil: Stochastische Geometrie.Teubner, Stuttgart 2000. Zbl 0964.52009, MR 1794753
.

Files

Files Size Format View
Kybernetika_45-2009-6_4.pdf 1.077Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo