Previous |  Up |  Next

Article

Title: Spatio-temporal modelling of a Cox point process sampled by a curve, filtering and Inference (English)
Author: Frcalová, Blažena
Author: Beneš, Viktor
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 6
Year: 2009
Pages: 912-930
Summary lang: English
.
Category: math
.
Summary: The paper deals with Cox point processes in time and space with Lévy based driving intensity. Using the generating functional, formulas for theoretical characteristics are available. Because of potential applications in biology a Cox process sampled by a curve is discussed in detail. The filtering of the driving intensity based on observed point process events is developed in space and time for a parametric model with a background driving compound Poisson field delimited by special test sets. A hierarchical Bayesian model with point process densities yields the posterior. Markov chain Monte Carlo "Metropolis within Gibbs" algorithm enables simultaneous filtering and parameter estimation. Posterior predictive distributions are used for model selection and a numerical example is presented. The new approach to filtering is related to the residual analysis of spatio-temporal point processes. (English)
Keyword: Cox point process
Keyword: filtering
Keyword: spatio-temporal process
MSC: 60D05
MSC: 60G55
MSC: 62M30
idZBL: Zbl 1192.60073
idMR: MR2650073
.
Date available: 2010-06-02T19:24:33Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140029
.
Reference: [1] A. Baddeley, R. Turner, J. Møller, and M. Hazelton: Residual analysis for spatial point processes (with discussion).J. Royal Stat. Soc. B 67 (2005), 617–666. MR 2210685
Reference: [2] O. Barndorff-Nielsen and N. Shephard: Non-Gaussian Ornstein–Uhlenbeck based models and some of their uses in financial economics.J. Royal Stat. Soc. B 63 (2001), 167–241. MR 1841412
Reference: [3] O. Barndorff-Nielsen and J. Schmiegel: Lévy based tempo-spatial modelling; with applications to turbulence.Usp. Mat. Nauk 159 (2004), 63–90. MR 2068843
Reference: [4] V. Beneš and B. Frcalová: Modelling and simulation of a neurophysiological experiment by spatio-temporal point processes.Image Anal. Stereol. 1 (2008), 27, 47–52.
Reference: [5] P. Brémaud: Point Process and Queues.Springer, New York 1981. MR 0636252
Reference: [6] A. Brix and J. Møller: Space-time multi type log Gaussian Cox processes with a view to modelling weed data.Scand. J. Statist. 28 (2002), 471–488. MR 1858412
Reference: [7] A. Brix and P. Diggle: Spatio-temporal prediction for log-Gaussian Cox processes.J. Royal Statist. Soc. B 63 (2001), 823–841. MR 1872069
Reference: [8] M. A. Clyde and R. L. Wolpert: Nonparametric function estimation using overcomplete dictionaries.Bayesian Statistics 8 (2007), 1–24. MR 2433190
Reference: [9] R. Cont and P. Tankov: Financial Modelling with Jump Processes.Chapman and Hall/CRC, Boca Raton 2004. MR 2042661
Reference: [10] D. Daley and D. Vere-Jones: An Introduction to the Theory of Point Processes I, II.Springer, New York 2003, 2008. MR 0950166
Reference: [11] A. Ergun, R. Barbieri, U. T. Eden, M. A. Wilson, and E. N. Brown: Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods.IEEE Trans. Biomed. Engrg. 54 (2007), 3, 307–326.
Reference: [12] P. M. Fishman and D. Snyder: The statistical analysis of space-time point processes.IEEE Trans. Inform. Theory 22 (1976), 257–274. MR 0418216
Reference: [13] G. Hellmund, M. Prokešová, and E. Vedel Jensen: Lévy based Cox point processes.Adv. Appl. Probab. 40 (2008), 3, 603–629. MR 2454025
Reference: [14] M. Jacobsen: Point Processes Theory and Applications.Marked Point and Piecewise Deterministic Processes. Birkhäuser, Boston 2006. MR 2189574
Reference: [15] A. F. Karr: Point Processes and Their Statistical Inference.Marcel Dekker, New York 1985. MR 1113698
Reference: [16] P. Lánský and J. Vaillant: Stochastic model of the overdispersion in the place cell discharge.BioSystems 58 (2000), 27–32.
Reference: [17] R. Lechnerová, K. Helisová, and V. Beneš: Cox point processes driven by Ornstein–Uhlenbeck type processes.Method. Comp. Appl. Probab. 10 (2008), 3, 315–336.
Reference: [18] J. Møller and R. Waagepetersen: Statistics and Simulations of Spatial Point Processes.World Sci., Singapore 2003.
Reference: [19] J. Møller and C. Diaz-Avalos: Structured spatio-temporal shot-noise Cox point process models, with a view to modelling forest fires.Scand. J. Statist. (2009), to appear. MR 2675937
Reference: [20] Y. Ogata: Space-time point process models for eartquake occurences.Ann. Inst. Statist. Math. 50 (1998), 379–402.
Reference: [21] J. Pedersen: The Lévy–Ito Decomposition of Independently Scattered Random Measure.Res. Report 2, MaPhySto, University of Aarhus 2003.
Reference: [22] R. D. Peng, F. P. Schoenberg, and J. Woods: A space-time conditional intensity model for evaluating a wildfire hazard risk.J. Amer. Statist. Assoc. 100 (2005), 469, 26–35. MR 2166067
Reference: [23] B. S. Rajput and J. Rosinski: Spectral representations of infinitely divisible processes.Probab. Theory Related Fields 82 (1989), 451–487. MR 1001524
Reference: [24] G. Roberts, O. Papaspiliopoulos, and P. Dellaportas: Bayesian inference for non-Gaussian Ornstein–Uhlenbeck stochastic volatility processes.J. Royal Statist. Soc. B 66 (2004), 369–393. MR 2062382
Reference: [25] D. L. Snyder: Filtering and detection for doubly stochastic Poisson processes.IEEE Trans. Inform. Theory 18 (1972), 91–102. Zbl 0227.62055, MR 0408953
Reference: [26] F. P. Schoenberg, D. R. Brillinger, and P. M. Guttorp: Point processes, spatial-temporal.In: Encycl. of Environmetrics (A. El. Shaarawi and W. Piegorsch, eds.), Vol. 3, Wiley, New York 2003, pp. 1573–1577.
Reference: [27] J. Zhuang: Second-order residual analysis of spatiotemporal point processes and applications in model evaluation.J. Royal Statist. Soc. B 68 (2006), 635–653. Zbl 1110.62128, MR 2301012
.

Files

Files Size Format View
Kybernetika_45-2009-6_3.pdf 1.572Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo