Previous |  Up |  Next

Article

Title: The dynamics of weakly interacting fronts in an adsorbate-induced phase transition model (English)
Author: Ei, Shin-Ichiro
Author: Tsujikawa, Tohru
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 4
Year: 2009
Pages: 625-633
Summary lang: English
.
Category: math
.
Summary: Hildebrand et al. (1999) proposed an adsorbate-induced phase transition model. For this model, Takei et al. (2005) found several stationary and evolutionary patterns by numerical simulations. Due to bistability of the system, there appears a phase separation phenomenon and an interface separating these phases. In this paper, we introduce the equation describing the motion of two interfaces in $\mathbb{R}^2$ and discuss an application. Moreover, we prove the existence of the traveling front solution which approximates the shape of the solution in the neighborhood of the interface. (English)
Keyword: reaction-diffusion system
Keyword: interaction of fronts
Keyword: phase transition model
MSC: 35B25
MSC: 35B40
MSC: 35K40
MSC: 35K57
MSC: 74A50
idZBL: Zbl 1193.35006
idMR: MR2588628
.
Date available: 2010-06-02T19:00:10Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140058
.
Reference: [1] S.-I. Ei: The motion of weakly interacting pulses in reaction-diffusion systems.J. Dynam. Differential Equations 14 (2002), 85–137. Zbl 1007.35039, MR 1878646
Reference: [2] S.-I. Ei and T. Ohta: Equation of motion for interacting pulse.Phys. Rev. E 50 (1994), 4672–4678.
Reference: [3] M. Eiswirth, M. Bär, and H. H. Rotermund: Spatiotemporal selforganization on isothermal catalysts.Physica D 84 (1995), 40–57.
Reference: [4] M. Funaki, M. Mimura, and T. Tsujikawa: Travelling front solutions arising in the chemotaxis-growth model.Interfaces and Free Boundaries 8 (2006), 223–245. MR 2256842
Reference: [5] M. Hildebrand: Selbstorganisierte nanostrukturen in katakyschen oberflächenreaktionen.Ph.D. Dissertation, Mathematisch–Naturwissenschaftlichen Fakultät I, Humboldt–Universität, Berlin 1999.
Reference: [6] M. Hildebrand, M. Ipsen, H. S. Mikhailov, and G. Ertl: Localized nonequailibrium nanostructures in surface chemical reactions.New J. Phys. 5 (2003), 61.1–61.28.
Reference: [7] M. Hildebrand, M. Kuperman, H. Wio, and A. S. Mikhailov: Self-organized chemical nanoscale microreactors.Phys. Rev. Lett. 83 (1999), 1475–1478.
Reference: [8] K. Kuto and T. Tsujikawa: Pattern formation for adsorbate-induced phase transition model.RIMS Kokyuroku Bessatsu B3 (2007), 43–58. MR 2408125
Reference: [9] A. v. Oertzen, H. H. Rotermund, A. S. Mikhailov, and G. Ertl: Standing wave patterns in the CO oxidation reaction on a Pt(110) surface: experiments and modeling.J. Phys. Chem. B 104 (2000), 3155–3178.
Reference: [10] Y. Takei, T. Tsujikawa, and A. Yagi: Numerical computations and pattern formation for adsorbate-induced phase transition model.Sci. Math. Japon. 61 (2005), 525–534. MR 2140113
Reference: [11] Y. Takei, M. Efendiev, T. Tsujikawa, and A. Yagi: Exponential attractor for an adsorbate-induced phase transition model in non smooth domains.Osaka J. Math. 43 (2006), 215–237. MR 2222411
Reference: [12] T. Tsujikawa: Singular limit analysis of an adsorbate-induced phase transition model.Preprint.
Reference: [13] T. Tsujikawa and A. Yagi: Exponential attractor for an adsorbate-induced phase transition model.Kyushu J. Math. 56 (2002), 313–336. MR 1934129
.

Files

Files Size Format View
Kybernetika_45-2009-4_7.pdf 896.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo