Previous |  Up |  Next

Article

Title: On a variant of the local projection method stable in the SUPG norm (English)
Author: Knobloch, Petr
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 4
Year: 2009
Pages: 634-645
Summary lang: English
.
Category: math
.
Summary: We consider the local projection finite element method for the discretization of a scalar convection-diffusion equation with a divergence-free convection field. We introduce a new fluctuation operator which is defined using an orthogonal $L^2$ projection with respect to a weighted $L^2$ inner product. We prove that the bilinear form corresponding to the discrete problem satisfies an inf-sup condition with respect to the SUPG norm and derive an error estimate for the discrete solution. (English)
Keyword: finite element method
Keyword: convection-diffusion equation
Keyword: stability
Keyword: inf-sup condition
Keyword: stabilization
Keyword: SUPG method
Keyword: local projection method
Keyword: error estimates
MSC: 65N12
MSC: 65N15
MSC: 65N30
idZBL: Zbl 1191.65155
idMR: MR2588629
.
Date available: 2010-06-02T19:01:11Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140067
.
Reference: [1] R. Becker and M. Braack: A finite element pressure gradient stabilization for the Stokes equations based on local projections.Calcolo 38 (2001), 173–199. MR 1890352
Reference: [2] R. Becker and M. Braack: A two-level stabilization scheme for the Navier–Stokes equations.In: Numerical Mathematics and Advanced Applications (M. Feistauer et al., eds.), Springer–Verlag, Berlin 2004, pp. 123–130. MR 2121360
Reference: [3] M. Braack and E. Burman: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method.SIAM J. Numer. Anal. 43 (2006), 2544–2566. MR 2206447
Reference: [4] A. N. Brooks and T. J. R. Hughes: Streamline upwind / Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations.Comput. Methods Appl. Mech. Engrg. 32 (1982), 199–259. MR 0679322
Reference: [5] P. G. Ciarlet: Basic error estimates for elliptic problems.In: Handbook of Numerical Analysis, Vol. 2 – Finite Element Methods (pt. 1) (P. G. Ciarlet and J. L. Lions, eds.), North-Holland, Amsterdam 1991, pp. 17–351. Zbl 0875.65086, MR 1115237
Reference: [6] P. Knobloch: On the application of local projection methods to convection-diffusion-reaction problems.In: BAIL 2008 – Boundary and Interior Layers (Lecture Notes Comput. Sci. Engrg. 69, A. F. Hegarty, N. Kopteva, E. O’Riordan, and M. Stynes, eds.), Springer–Verlag, Berlin 2009, pp. 183–194. Zbl 1180.35051, MR 2581489
Reference: [7] P. Knobloch and L. Tobiska: On the stability of finite element discretizations of convection-diffusion-reaction equations.IMA J. Numer. Anal., Advance Access published on August 27, 2009; doi:10.1093/imanum/drp020
Reference: [8] G. Matthies, P. Skrzypacz, and L. Tobiska: A unified convergence analysis for local projection stabilisations applied to the Oseen problem.M2AN Math. Model. Numer. Anal. 41 (2007), 713–742. MR 2362912
Reference: [9] H.-G. Roos, M. Stynes, and L. Tobiska: Robust Numerical Methods for Singularly Perturbed Differential Equations.Convection-Diffusion-Reaction and Flow Problems. Second edition. Springer–Verlag, Berlin 2008. MR 2454024
.

Files

Files Size Format View
Kybernetika_45-2009-4_8.pdf 1.010Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo