Previous |  Up |  Next

Article

Title: A solution of nonlinear diffusion problems by semilinear reaction-diffusion systems (English)
Author: Murakawa, Hideki
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 4
Year: 2009
Pages: 580-590
Summary lang: English
.
Category: math
.
Summary: This paper deals with nonlinear diffusion problems involving degenerate parabolic problems, such as the Stefan problem and the porous medium equation, and cross-diffusion systems in population ecology. The degeneracy of the diffusion and the effect of cross-diffusion, that is, nonlinearities of the diffusion, complicate its analysis. In order to avoid the nonlinearities, we propose a reaction-diffusion system with solutions that approximate those of the nonlinear diffusion problems. The reaction-diffusion system includes only a simple reaction and linear diffusion. Resolving semilinear problems is typically easier than dealing with nonlinear diffusion problems. Therefore, our ideas are expected to reveal new and more effective approaches to the study of nonlinear problems. (English)
Keyword: reaction-diffusion system approximation
Keyword: degenerate parabolic problem
Keyword: cross-diffusion system
MSC: 35K51
MSC: 35K55
MSC: 35K57
MSC: 35K65
MSC: 76S05
MSC: 80A22
idZBL: Zbl 1205.35143
idMR: MR2588624
.
Date available: 2010-06-02T18:53:00Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140064
.
Reference: [1] L. Chen and A. Jüngel: Analysis of a multidimensional parabolic population model with strong cross-diffusion.SIAM J. Math. Anal. 36 (2006), 301–322. MR 2083864
Reference: [2] L. Chen and A. Jüngel: Analysis of a parabolic cross-diffusion population model without self-diffusion.J. Differential Equations 224 (2006), 39–59. MR 2220063
Reference: [3] E. N. Dancer, D. Hilhorst, M. Mimura, and L. A. Peletier: Spatial segregation limit of a competition-diffusion system.European J. Appl. Math. 10 (1999), 97–115. MR 1687440
Reference: [4] D. Hilhorst, M. Iida, M. Mimura, and H. Ninomiya: A competition-diffusion system approximation to the classical two-phase Stefan problem.Japan J. Indust. Appl. Math. 18 (2001), 161–180. MR 1842906
Reference: [5] D. Hilhorst, M. Iida, M. Mimura, and H. Ninomiya: Relative compactness in $L^p$ of solutions of some $2m$ components competition-diffusion systems.Discrete Contin. Dyn. Syst. 21 (2008), 1, 233–244. MR 2379463
Reference: [6] D. Hilhorst, M. Mimura, and H. Ninomiya: Fast reaction limit of competition-diffusion systems.In: Handbook of Differential Equations: Evolutionary Equations Vol. 5 (C. M. Dafermos and M. Pokorny, eds.). Elsevier/North Holland, Amsterdam 2009, pp. 105–168. MR 2562164
Reference: [7] M. Iida, M. Mimura, and H. Ninomiya: Diffusion, cross-diffusion and competitive interaction.J. Math. Biol. 53 (2006), 617–641. MR 2251792
Reference: [8] T. Kadota and K. Kuto: Positive steady states for a prey-predator model with some nonlinear diffusion terms.J. Math. Anal. Appl. 323 (2006), 1387–1401. MR 2260190
Reference: [9] R. Kersner: Nonlinear heat conduction with absorption: space localization and extinction in finite time.SIAM J. Appl. Math. 43 (1983), 1274–1285. Zbl 0536.35039, MR 0722941
Reference: [10] P. Knabner: Mathematische Modelle für Transport und Sorption gelöster Stoffe in porösen Medien.Verlag Peter Lang, Frankfurt 1991. Zbl 0731.35054, MR 1218175
Reference: [11] H. Murakawa: On reaction-diffusion system approximations to the classical Stefan problems.In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005 (M. Beneš, M. Kimura and T. Nakaki, eds.), COE Lecture Note Vol. 3, Faculty of Mathematics, Kyushu University 2006, pp. 117–125. Zbl 1144.80365, MR 2279052
Reference: [12] H. Murakawa: Reaction-diffusion system approximation to degenerate parabolic systems.Nonlinearity 20 (2007), 2319–2332. MR 2356112
Reference: [13] H. Murakawa: A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem.Nonlinear Anal. 69 (2008), 3512–3524. Zbl 1158.35379, MR 2450556
Reference: [14] H. Murakawa: A Solution of Nonlinear Degenerate Parabolic Problems by Semilinear Reaction-Diffusion Systems.Ph.D. Thesis, Graduate School of Mathematics, Kyushu University, 2008.
Reference: [15] H. Murakawa: Discrete-time approximation to nonlinear degenerate parabolic problems using a semilinear reaction-diffusion system.Preprint.
Reference: [16] H. Murakawa: A relation between cross-diffusion and reaction-diffusion.Preprint.
Reference: [17] R. H. Nochetto: A note on the approximation of free boundaries by finite element methods.RAIRO Modél. Math. Anal. Numér. 20 (1986), 355–368. Zbl 0596.65092, MR 0852686
Reference: [18] A. Okubo and S. A. Levin: Diffusion and Ecological Problems: Modern Perspectives.Second edition. (Interdisciplinary Applied Mathematics 14.) Springer–Verlag, New York 2001. MR 1895041
Reference: [19] N. Shigesada, K. Kawasaki, and E. Teramoto: Spatial segregation of interacting species.J. Theor. Biol. 79 (1979), 83–99. MR 0540951
Reference: [20] K. Tomoeda: Support re-splitting phenomena caused by an interaction between diffusion and absorption.Proc. Equadiff–11 2005, pp. 499–506.
.

Files

Files Size Format View
Kybernetika_45-2009-4_3.pdf 877.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo