Previous |  Up |  Next

Article

Title: Direct approach to mean-curvature flow with topological changes (English)
Author: Pauš, Petr
Author: Beneš, Michal
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 4
Year: 2009
Pages: 591-604
Summary lang: English
.
Category: math
.
Summary: This contribution deals with the numerical simulation of dislocation dynamics. Dislocations are described by means of the evolution of a family of closed or open smooth curves $ \Gamma (t) : S \rightarrow \mathbb{R} ^2 $, $ t \geqq 0 $. The curves are driven by the normal velocity $v$ which is the function of curvature $\kappa$ and the position. The evolution law reads as: $v = -\kappa + F$. The motion law is treated using direct approach numerically solved by two schemes, i. e., backward Euler semi-implicit and semi-discrete method of lines. Numerical stability is improved by tangential redistribution of curve points which allows long time computations and better accuracy. The results of dislocation dynamics simulation are presented (e. g., dislocations in channel or Frank–Read source). We also introduce an algorithm for treatment of topological changes in the evolving curve. (English)
Keyword: mean curvature flow
Keyword: dislocation dynamics
Keyword: parametric approach
MSC: 35L65
MSC: 53C44
MSC: 74E15
MSC: 74H15
MSC: 74S10
MSC: 76M12
MSC: 80A20
idZBL: Zbl 1192.65128
idMR: MR2588625
.
Date available: 2010-06-02T18:54:23Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140063
.
Reference: [1] S. Altschuler and M. A. Grayson: Shortening space curves and flow through singularities.J. Differential Geom. 35 (1992), 283–298. MR 1158337
Reference: [2] J. W. Barrett, H. Garcke, and R. Nurnberg: On the variational approximation of combined second and fourth order geometric evolution equations.SIAM J. Sci. Comp. 29 (2007), 1006–1041. MR 2318696
Reference: [3] M. Beneš: Phase field model of microstructure growth in solidification of pure substances.Acta Math. Univ. Comenian. 70 (2001), 123–151.
Reference: [4] M. Beneš: Mathematical analysis of phase-field equations with numerically efficient coupling terms.Interfaces and Free Boundaries 3 (2001), 201–221. MR 1825658
Reference: [5] M. Beneš, K. Mikula, T. Oberhuber, and D. Ševčovič: Comparison study for level set and direct Lagrangian methods for computing Willmore flow of closed planar curves.Computing and Visualization in Science 12 (2009), No. 6, 307–317. MR 2520782
Reference: [6] K. Deckelnick and G. Dziuk: Mean curvature flow and related topics.Frontiers in Numerical Analysis (2002), 63–108. MR 2006966
Reference: [7] G. Dziuk, A. Schmidt, A. Brillard, and C. Bandle: Course on Mean Curvature Flow.Manuscript 75 pp., Freiburg 1994.
Reference: [8] F. Kroupa: Long-range elastic field of semi-infinite dislocation dipole and of dislocation jog.Phys. Status Solidi 9 (1965), 27–32.
Reference: [9] K. Mikula and D. Ševčovič: Evolution of plane curves driven by a nonlinear function of curvature and anisotropy.SIAM J. Appl. Math. 61 (2001), 5, 1473–1501. MR 1824511
Reference: [10] K. Mikula and D. Ševčovič: Computational and qualitative aspects of evolution of curves driven by curvature and external force.Comput. Visualization Sci. 6 (2004), 4, 211–225. MR 2071441
Reference: [11] V. Minárik and J. Kratochvíl: Dislocation dynamics – analytical description of the interaction force between dipolar loops.Kybernetika 43 (2007), 841–854. MR 2388398
Reference: [12] V. Minárik, J. Kratochvíl, and K. Mikula: Numerical Simulation of dislocation dynamics by means of parametric approach.In: Proc. Czech–Japanese Seminar in Applied Mathematics (M. Beneš, J. Mikyška, and T. Oberhuber, eds.), Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague 2005, pp. 128–138.
Reference: [13] V. Minárik, J. Kratochvíl, K. Mikula, and M. Beneš: Numerical simulation of dislocation dynamics.In: Numerical Mathematics and Advanced Applications – ENUMATH 2003 (M. Feistauer, V. Dolejší, P. Knobloch, and K. Najzar, eds.), Springer–Verlag, New York 2004, pp. 631–641.
Reference: [14] T. Mura: Micromechanics of Defects in Solids.Springer–Verlag, Berlin 1987.
Reference: [15] T. Oberhuber: Finite difference scheme for the Willmore flow of graphs.Kybernetika 43 (2007), 855–867. Zbl 1140.53032, MR 2388399
Reference: [16] S. Osher and R. P. Fedkiw: Level Set Methods and Dynamic Implicit Surfaces.Springer–Verlag, New York 2003. MR 1939127
Reference: [17] P. Pauš: Numerical simulation of dislocation dynamics.In: Proceedings of Slovak–Austrian Congress, Magia (M. Vajsáblová and P. Struk, eds.), Bratislava, pp. 45–52.
Reference: [18] P. Pauš and M. Beneš: Topological changes for parametric mean curvature flow.In: Proc. Algoritmy Conference (A. Handlovičová, P. Frolkovič, K. Mikula, and D. Ševčovič, eds.), Podbanské 2009, pp. 176–184.
Reference: [19] P. Pauš and M. Beneš: Comparison of methods for mean curvature flow.(In preparation.)
Reference: [20] J. A. Sethian: Level Set Methods and Fast Marching Methods.Cambridge University Press, Cambridge 1999. Zbl 0973.76003, MR 1700751
Reference: [21] D. Ševčovič and S. Yazaki: On a motion of plane curves with a curvature adjusted tangential velocity.In: http://www.iam.fmph.uniba.sk/institute/sevcovic/papers/
Reference: [22] : .cl39.pdf, arXiv:0711.2568, 2007.
.

Files

Files Size Format View
Kybernetika_45-2009-4_4.pdf 2.590Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo