Full entry |
PDF
(0.9 MB)
Feedback

gradient flow; bending energy; total-length constraint; local-length constraint

References:

[1] G. Dziuk, E. Kuwert, and R. Schätzle: **Evolution of elastic curves in $\mathbb R^n$: existence and computation**. SIAM J. Math. Anal. 33 (2002), 5, 1228–1245. MR 1897710

[2] T. Kurihara and T. Nagasawa: **On the gradient flow for a shape optimization problem of plane curves as a singular limit**. Saitama J. Math. 24 (2006/2007), 43–75. MR 2396572

[3] K. Mikula and D. Ševčovič: **Evolution of plane curves driven by a nonlinear function of curvature and anisotropy**. SIAM J. Appl. Math. 61 (2001), 5, 1473–1501. MR 1824511

[4] K. Mikula and D. Ševčovič: **A direct method for solving an anisotropic mean curvature flow of plane curves with an external force**. Math. Methods Appl. Sci. 27 (2004), 13, 1545–1565. MR 2077443

[5] K. Mikula and D. Ševčovič: **Computational and qualitative aspects of evolution of curves driven by curvature and external force**. Comput. Vis. Sci. 6 (2004), 4, 211–225. MR 2071441

[6] K. Mikula and D. Ševčovič: **Evolution of curves on a surface driven by the geodesic curvature and external force**. Appl. Anal. 85 (2006), 4, 345–362. MR 2196674

[7] Y. Miyamoto: **Reformulation of Local-Constraint-Gradient Flow for Bending Energy of Plane Curves Applying the Fredholm Alternative (in Japanese)**. Master Thesis, Saitama University, 2009.

[8] S. Okabe: **The motion of elastic planar closed curve under the area-preserving condition**. Indiana Univ. Math. J. 56 (2007), 4, 1871–1912. MR 2354702

[9] F. Suto: **On the Global Existence for Local/Total-Constraint-Gradient Flows for the Bending Energy of Plane Curves (in Japanese)**. Master Thesis, Saitama University, 2009.