Previous |  Up |  Next

Article

Title: Phase field model for mode III crack growth in two dimensional elasticity (English)
Author: Takaishi, Takeshi
Author: Kimura, Masato
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 4
Year: 2009
Pages: 605-614
Summary lang: English
.
Category: math
.
Summary: A phase field model for anti-plane shear crack growth in two dimensional isotropic elastic material is proposed. We introduce a phase field to represent the shape of the crack with a regularization parameter $\epsilon >0$ and we approximate the Francfort–Marigo type energy using the idea of Ambrosio and Tortorelli. The phase field model is derived as a gradient flow of this regularized energy. We show several numerical examples of the crack growth computed with an adaptive mesh finite element method. (English)
Keyword: crack growth
Keyword: phase field model
Keyword: numerical simulation
MSC: 35K57
MSC: 35Q74
MSC: 74B20
MSC: 74R10
MSC: 81T80
idZBL: Zbl 1193.35007
idMR: MR2588626
.
Date available: 2010-06-02T18:55:35Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140066
.
Reference: [1] L. Ambrosio and V. M. Tortorelli: On the approximation of free discontinuity problems.Boll. Un. Mat. Ital. 7 (1992), 6-B, 105–123. MR 1164940
Reference: [2] B. Bourdin: The variational formulation of brittle fracture: numerical implementation and extensions.Preprint 2006, to appear in IUTAM Symposium on Discretization Methods for Evolving Discontinuities (T. Belytschko, A. Combescure, and R. de Borst eds.), Springer.
Reference: [3] B. Bourdin: Numerical implementation of the variational formulation of brittle fracture.Interfaces Free Bound. 9 (2007), 411–430. MR 2341850
Reference: [4] B. Bourdin, G. A. Francfort, and J.-J. Marigo: Numerical experiments in revisited brittle fracture.J. Mech. Phys. Solids 48 (2000), 4, 797–826. MR 1745759
Reference: [5] M. Buliga: Energy minimizing brittle crack propagation.J. Elasticity 52 (1998/99), 3, 201–238. Zbl 0947.74055, MR 1700752
Reference: [6] C. M. Elliott and J. R. Ockendon: Weak and Variational Methods for Moving Boundary Problems.Pitman Publishing Inc. 1982. MR 0650455
Reference: [7] G. A. Francfort and J.-J. Marigo: Revisiting brittle fracture as an energy minimization problem.J. Mech. Phys. Solids 46 (1998), 1319–1342. MR 1633984
Reference: [8] A. A. Griffith: The phenomenon of rupture and flow in solids.Phil. Trans. Royal Soc. London A 221 (1920), 163–198.
Reference: [9] M. Kimura, H. Komura, M. Mimura, H. Miyoshi, T. Takaishi, and D. Ueyama: Adaptive mesh finite element method for pattern dynamics in reaction-diffusion systems.In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005 (M. Beneš, M. Kimura, and T. Nakaki, eds.), COE Lecture Note Vol. 3, Faculty of Mathematics, Kyushu University 2006, pp. 56–68. MR 2277123
Reference: [10] M. Kimura, H. Komura, M. Mimura, H. Miyoshi, T. Takaishi, and D. Ueyama: Quantitative study of adaptive mesh FEM with localization index of pattern.In: Proc. of the Czech–Japanese Seminar in Applied Mathematics 2006 (M. Beneš, M. Kimura, and T. Nakaki, eds.), COE Lecture Note Vol. 6, Faculty of Mathematics, Kyushu University 2007, pp. 114–136. MR 2277123
Reference: [11] R. Kobayashi: Modeling and numerical simulations of dendritic crystal growth.Physica D 63 (1993), 410–423. Zbl 0797.35175
Reference: [12] A. Schmidt and K. G. Siebert: Design of Adaptive Finite Element Software.The Finite Element Toolbox ALBERTA (Lecture Notes in Comput. Sci. Engrg. 42.) Springer–Verlag, Berlin 2005. MR 2127659
Reference: [13] A. Visintin: Models of Phase Transitions.Birkhäuser–Verlag, Basel 1996. Zbl 0903.35097, MR 1423808
.

Files

Files Size Format View
Kybernetika_45-2009-4_5.pdf 1.784Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo