Previous |  Up |  Next


Title: Checking proportional rates in the two-sample transformation model (English)
Author: Kraus, David
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 2
Year: 2009
Pages: 261-278
Summary lang: English
Category: math
Summary: Transformation models for two samples of censored data are considered. Main examples are the proportional hazards and proportional odds model. The key assumption of these models is that the ratio of transformation rates (e. g., hazard rates or odds rates) is constant in time. A~method of verification of this proportionality assumption is developed. The proposed procedure is based on the idea of Neyman's smooth test and its data-driven version. The method is suitable for detecting monotonic as well as nonmonotonic ratios of rates. (English)
Keyword: Neyman's smooth test
Keyword: proportional hazards
Keyword: proportional odds
Keyword: survival analysis
Keyword: transformation model
Keyword: two-sample test
MSC: 62N01
MSC: 62N02
MSC: 62N03
MSC: 65C60
idZBL: Zbl 1165.62072
idMR: MR2518151
Date available: 2010-06-02T18:30:42Z
Last updated: 2013-09-21
Stable URL:
Reference: [1] P. K. Andersen, O. Borgan, R. D. Gill, and N. Keiding: Statistical Models Based on Counting Processes.Springer, New York 1993. MR 1198884
Reference: [2] P. K. Andersen and R. D. Gill: Cox’s regression model for counting processes: a large sample study.Ann. Statist. 10 (1982), 1100–1120. MR 0673646
Reference: [3] V. Bagdonavičius and M. Nikulin: Generalized proportional hazards model based on modified partial likelihood.Lifetime Data Anal. 5 (1999), 329–350. MR 1758967
Reference: [4] V. Bagdonavičius and N. Nikulin: On goodness-of-fit for the linear transformation and frailty models.Statist. Probab. Lett. 47 (2000), 177–188. MR 1747106
Reference: [5] V. Bagdonavičius and M. Nikulin: Accelerated life models.Modeling and Statistical Analysis. Chapman & Hall/CRC, Boca Raton 2001.
Reference: [6] K. Chen, Z. Jin, and Z. Ying: Semiparametric analysis of transformation models with censored data.Biometrika 89 (2002), 659–668. MR 1929170
Reference: [7] D. Collett: Modelling Survival Data in Medical Research.Chapman & Hall/CRC, Boca Raton 2003. MR 1999899
Reference: [8] D. M. Dabrowska and K. A. Doksum: Estimation and testing in a two-sample generalized odds-rate model.J. Amer. Statist. Assoc. 83 (19í8), 744–749. MR 0963802
Reference: [9] J.-Y. Dauxois and S. N. U. A. Kirmani: Testing the proportional odds model under random censoring.Biometrika 90 (2003), 913–922. MR 2024766
Reference: [10] T. R. Fleming and D. P. Harrington: Counting Processes and Survival Analysis.Wiley, New York 1991. MR 1100924
Reference: [11] R. D. Gill and M. Schumacher: A simple test of the proportional hazards assumption.Biometrika 74 (1987), 289–300.
Reference: [12] D. Kraus: Data-driven smooth tests of the proportional hazards assumption.Lifetime Data Anal. 13 (2007), 1–16. Zbl 1121.62086, MR 2355293
Reference: [13] T. Ledwina: Data-driven version of Neyman’s smooth test of fit.J. Amer. Statist. Assoc. 89 (1994), 1000–1005. Zbl 0805.62022, MR 1294744
Reference: [14] D. Y. Lin, L. J. Wei, and Z. Ying: Checking the Cox model with cumulative sums of martingale-based residuals.Biometrika 80 (1993), 557–572. MR 1248021
Reference: [15] T. Martinussen and T. H. Scheike: Dynamic Regression Models for Survival Data.Springer, New York 2006. MR 2214443
Reference: [16] S. A. Murphy, A. J. Rossini, and A. W. van der Vaart: Maximum likelihood estimation in the proportional odds model.J. Amer. Statist. Assoc. 92 (1997), 968–976. MR 1482127
Reference: [17] J. C. W. Rayner and D. J. Best: Smooth Tests of Goodness of Fit.Oxford University Press, New York 1989. MR 1029526
Reference: [18] D. Sengupta, A. Bhattacharjee, and B. Rajeev: Testing for the proportionality of hazards in two samples against the increasing cumulative hazard ratio alternative.Scand. J. Statist. 25 (1998), 637–647. MR 1666780
Reference: [19] C. A. Struthers and J. D. Kalbfleisch: Misspecified proportional hazard models.Biometrika 73 (1986), 363–369. MR 0855896
Reference: [20] A. W. van der Vaart and J. A. Wellner: Weak Convergence and Empirical Processes.With Applications to Statistics. Springer, New York 1996. MR 1385671
Reference: [21] L. J. Wei: Testing goodness of fit for proportional hazards model with censored observations.J. Amer. Statist. Assoc. 79 (1984), 649–652. Zbl 0547.62070, MR 0763583


Files Size Format View
Kybernetika_45-2009-2_5.pdf 943.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo