Title:
|
Markov bases of conditional independence models for permutations (English) |
Author:
|
Csiszár, Villő |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
45 |
Issue:
|
2 |
Year:
|
2009 |
Pages:
|
249-260 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The L-decomposable and the bi-decomposable models are two families of distributions on the set $S_n$ of all permutations of the first $n$ positive integers. Both of these models are characterized by collections of conditional independence relations. We first compute a Markov basis for the L-decomposable model, then give partial results about the Markov basis of the bi-decomposable model. Using these Markov bases, we show that not all bi-decomposable distributions can be approximated arbitrarily well by strictly positive bi-decomposable distributions. (English) |
Keyword:
|
conditional independence |
Keyword:
|
Markov basis |
Keyword:
|
closure of exponential family |
Keyword:
|
permutation |
Keyword:
|
L-decomposable |
MSC:
|
60C05 |
MSC:
|
60J99 |
MSC:
|
62E10 |
MSC:
|
62H05 |
idZBL:
|
Zbl 1165.62007 |
idMR:
|
MR2518150 |
. |
Date available:
|
2010-06-02T18:29:33Z |
Last updated:
|
2013-09-21 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140073 |
. |
Reference:
|
[1] D. Cox, J. Little, and D. O’Shea: Ideals, Varieties, and Algorithms.Springer, New York 1992. MR 1189133 |
Reference:
|
[2] D. E. Critchlow, M. A. Fligner, and J. S. Verducci: Probability models on rankings.J. Math. Psych. 35 (1991), 294–318. MR 1128236 |
Reference:
|
[3] V. Csiszár: Conditional independence relations and log-linear models for random matchings.Acta Math. Hungar. (2008), Online First. MR 2487466 |
Reference:
|
[4] P. Diaconis and N. Eriksson: Markov bases for noncommutative Fourier analysis of ranked data.J. Symbolic Comput. 41 (2006), 173–181. MR 2197153 |
Reference:
|
[5] P. Diaconis and B. Sturmfels: Algebraic algorithms for sampling from conditional distributions.Ann. Statist. 26 (1998), 363–397. MR 1608156 |
Reference:
|
[6] A. Dobra: Markov bases for decomposable graphical models.Bernoulli 9 (2003), 1093–1108. Zbl 1053.62072, MR 2046819 |
Reference:
|
[7] M. A. Fligner and J. S. Verducci (eds.): Probability Models and Statistical Analyses for Ranking Data.Springer, New York 1993. MR 1237197 |
Reference:
|
[8] 4ti2 team: 4ti2 – A software package for algebraic, geometric and combinatorial problems on linear spaces.Available at www.4ti2.de. |
Reference:
|
[9] D. Geiger, C. Meek, and B. Sturmfels: On the toric algebra of graphical models.Ann. Statist. 34 (2006), 1463–1492. MR 2278364 |
Reference:
|
[10] R. D. Luce: Individual Choice Behavior.Wiley, New York 1959. Zbl 0093.31708, MR 0108411 |
Reference:
|
[11] J. I. Marden: Analyzing and Modelling Rank Data.Chapman and Hall, London 1995. MR 1346107 |
Reference:
|
[12] G. Pistone, E. Riccomagno, and H. P. Wynn: Algebraic Statistics.Chapman and Hall/CRC, Bocan Raton 2000. MR 2332740 |
Reference:
|
[13] F. Rapallo: Toric statistical models: parametric and binomial representations.Ann. Inst. Statist. Math. 59 (2007), 727–740. Zbl 1133.62343, MR 2397736 |
Reference:
|
[14] B. Sturmfels: Gröbner bases and convex polytopes.Amer. Math. Soc., Providence RI 1996. Zbl 0856.13020, MR 1363949 |
Reference:
|
[15] S. Sullivant: Toric Ideals in Algebraic Statistics.Ph.D. Thesis, University of California, Berkeley 2005. MR 2623019 |
Reference:
|
[16] A. Takemura and S. Aoki: Some characterizations of minimal Markov basis for sampling from discrete conditional distributions.Ann. Inst. Statist. Math. 56 (2004), 1–17. MR 2053726 |
. |