Previous |  Up |  Next

Article

Title: A construction of a Fréchet-Urysohn space, and some convergence concepts (English)
Author: Arhangel'skii, A. V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 1
Year: 2010
Pages: 99-112
Summary lang: English
.
Category: math
.
Summary: Some strong versions of the Fréchet-Urysohn property are introduced and studied. We also strengthen the concept of countable tightness and generalize the notions of first-countability and countable base. A construction of a topological space is described which results, in particular, in a Tychonoff countable Fréchet-Urysohn space which is not first-countable at any point. It is shown that this space can be represented as the image of a countable metrizable space under a continuous pseudoopen mapping. On the other hand, if a topological group $G$ is an image of a separable metrizable space under a pseudoopen continuous mapping, then $G$ is metrizable (Theorem 5.6). Several other applications of the techniques developed below to the study of pseudoopen mappings and intersections of topologies are given (see Theorem 5.17). (English)
Keyword: first-countable
Keyword: Fréchet-Urysohn
Keyword: countably compact
Keyword: closure-sensor
Keyword: topological group
Keyword: strong FU-sensor
Keyword: pseudoopen mapping
Keyword: side-base
Keyword: $\omega $-Fréchet-Urysohn space
MSC: 54D20
MSC: 54G20
MSC: 54J99
idZBL: Zbl 1224.54055
idMR: MR2666083
.
Date available: 2010-05-21T12:36:10Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140083
.
Reference: [1] Arhangel'skii A.V.: Structure and classification of topological spaces and cardinal invariants.Russian Math. Surveys 33 (1978), 33–96. MR 0526012, 10.1070/RM1978v033n06ABEH003884
Reference: [2] Arhangel'skii A.V.: Hurewicz spaces, analytic sets, and fan-tightness of function spaces.Dokl. Akad. Nauk SSSR 287:3 (1986), 525–528; English translation: Soviet Math. Dokl. 33:2 (1986), 396–399. MR 0837289
Reference: [3] Arhangel'skii A.V., Bella A.: Countable fan-tightness versus countable tightness.Comment. Math. Univ. Carolin. 37:3 (1996), 565–576. MR 1426921
Reference: [4] Arhangel'skii A.V. Ponomarev V.I.: Fundamentals of General Topology in Problems and Exercises.Izdat. “Nauka”, Moscow, 1974, 423 pp. (in Russian); English translation: ser. Mathematics and its Applications, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1984. xvi+415 pp.; Polish translation: Panstwowe Wydawnictwo Naukowe (PWN), Warsaw, 1986. 456 pp. MR 0785749
Reference: [5] Arhangel'skii A.V. Tkachenko M.G.: Topological Groups and Related Structures.Atlantis Press, Amsterdam-Paris, 2008. MR 2433295
Reference: [6] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl 0684.54001, MR 1039321
Reference: [7] Michael E.A.: A quintuple quotient quest.General Topology Appl. 2 (1972), 91–138. Zbl 0238.54009, MR 0309045, 10.1016/0016-660X(72)90040-2
Reference: [8] Nyikos P.J.: Subsets of $\omega ^{\omega }$ and the Fréchet-Urysohn and $\alpha _i$-properties.Topology Appl. 48 (1992), 91–116. MR 1195504, 10.1016/0166-8641(92)90021-Q
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-1_9.pdf 262.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo