Previous |  Up |  Next

Article

Title: Openly factorizable spaces and compact extensions of topological semigroups (English)
Author: Banakh, Taras
Author: Dimitrova, Svetlana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 1
Year: 2010
Pages: 113-131
Summary lang: English
.
Category: math
.
Summary: We prove that the semigroup operation of a topological semigroup $S$ extends to a continuous semigroup operation on its Stone-Čech compactification $\beta S$ provided $S$ is a pseudocompact openly factorizable space, which means that each map $f:S\to Y$ to a second countable space $Y$ can be written as the composition $f=g\circ p$ of an open map $p:X\to Z$ onto a second countable space $Z$ and a map $g:Z\to Y$. We present a spectral characterization of openly factorizable spaces and establish some properties of such spaces. (English)
Keyword: topological semigroup
Keyword: semigroup compactification
Keyword: inverse spectrum
Keyword: pseudocompact space
Keyword: openly factorizable space
Keyword: openly generated space
Keyword: Eberlein compact
Keyword: Corson compact
Keyword: Valdivia compact
MSC: 22A15
MSC: 54B30
MSC: 54C08
MSC: 54C20
MSC: 54D35
idZBL: Zbl 1224.54043
idMR: MR2666084
.
Date available: 2010-05-21T12:37:20Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140089
.
Reference: [1] Arhangel'skii A.V.: Eberlein compacta.in Encyclopedia of General Topology. (K.P. Hart, J. Nagata, J. Vaughan, eds.), Elsevier Sci. Publ., Amsterdam, 2004, pp. 145–146. MR 2049453
Reference: [2] Arhangel'skii A.V., Hušek M.: Extensions of topological and semitopological groups and product operations.Comment. Math. Univ. Carolin. 42:1 (2001), 173–186. MR 1825381
Reference: [3] Banakh T., Dimitrova S., Gutik O.: Embedding the bicyclic semigroup into countably compact topological semigroups.preprint (arXiv:0811.4276). MR 2729339
Reference: [4] Banakh T., Chigogidze A., Fedorchuk V.V.: On spaces of $\sigma$-additive probability measures.Topology Appl. 133:2 (2003), 139–155. Zbl 1027.28006, MR 1997961
Reference: [5] Berglund J., Junghenn H., Milnes P.: Analysis on Semigroups. Function Spaces, Compactifications, Representations.A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Zbl 0727.22001, MR 0999922
Reference: [6] Carruth J.H., Hildebrant J.A., Koch R.J.: The Theory of Topological Semigroups.Marcel Dekker, New York, 1983. Zbl 0581.22001, MR 0691307
Reference: [7] Engelking R.: General Topology.PWN, Warsaw, 1977. Zbl 0684.54001, MR 0500780
Reference: [8] Chigogidze A., Fedorchuk V.V.: Absolute Retracts and Infinite-dimensional Manifolds.Nauka, Moscow, 1992 (in Russian). Zbl 0762.54017, MR 1202238
Reference: [9] Hindman N., Strauss D.: Algebra in the Stone-Čech Compactification. Theory and Applications.de Gruyter Expositions in Mathematics, 27, Walter de Gruyter, Berlin, 1998. Zbl 0918.22001, MR 1642231
Reference: [10] Haydon R.: On a problem of Pelczynski: Milutin spaces, Dugundji spaces and AE(0-dim)., Studia Math. 52 (1974), 23–31. Zbl 0294.46016, MR 0418025
Reference: [11] Kalenda O.: Valdivia compact spaces in topology and Banach space theory.Extracta Math. 15:1 (2000), 1–85. Zbl 0983.46021, MR 1792980
Reference: [12] Kalenda O.: Natural examples of Valdivia compact spaces.J. Math. Anal. Appl. 340:1 (2008), 81–101. Zbl 1166.46007, MR 2376139, 10.1016/j.jmaa.2007.07.069
Reference: [13] Kalenda O., Kubiś W.: The structure of Valdivia compact lines.preprint (arXiv:0811.4144). MR 2607079
Reference: [14] Megrelishvili M.: Every semitopological semigroup compactification of the group $H\sb +[0,1]$ is trivial.Semigroup Forum 63:3 (2001), 357–370. MR 1851816, 10.1007/s002330010076
Reference: [15] Pestov V., Tkachenko M.: Problem 3.28.in Unsolved Problems of Topological ALgebra, Acad. of Sci. Moldova, Kishinev, “Shtiinca” 1985, p. 18.
Reference: [16] Reznichenko E.A.: Extension of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups.Topology Appl. 59:3 (1994), 233–244. Zbl 0835.22001, MR 1299719, 10.1016/0166-8641(94)90021-3
Reference: [17] Reznichenko E.A., Uspenskij V.V.: Pseudocompact Mal'tsev spaces.Topology Appl. 86:1 (1998), 83–104. Zbl 0938.54027, MR 1619345, 10.1016/S0166-8641(97)00124-7
Reference: [18] Ruppert W.: Compact Semitopological Semigroups: An Intrinsic Theory.Lecture Notes in Mathematics, 1079, Springer, Berlin, 1984. Zbl 0606.22001, MR 0762985
Reference: [19] Shakhmatov D.: Compact spaces and their generalizations.in Recent Progress in General Topology (Prague, 1991), 571–640, North-Holland, Amsterdam, 1992. Zbl 0801.54001, MR 1229139
Reference: [20] Shapiro L.B.: The space of closed subsets of $D^{\aleph_2}$ is not a dyadic bicompactum.Dokl. Akad. Nauk SSSR 228:6 (1976), 1302–1305. Zbl 0342.54031, MR 0410635
Reference: [21] Ščepin E.V.: Functors and uncountable powers of compacta.Uspekhi Mat. Nauk 36 (1981), no. 3(219), 3–62. MR 0622720
Reference: [22] Teleiko A., Zarichnyi M.: Categorical Topology of Compact Hausdorff Spaces.Monograph Series, 5, VNTL Publishers, L'viv, 1999. Zbl 1032.54004, MR 1783651
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-1_10.pdf 321.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo