Previous |  Up |  Next

Article

Title: Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems (English)
Author: Lin, Runchang
Author: Zhang, Zhimin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 3
Year: 2009
Pages: 251-266
Summary lang: English
.
Category: math
.
Summary: Natural superconvergence of the least-squares finite element method is surveyed for the one- and two-dimensional Poisson equation. For two-dimensional problems, both the families of Lagrange elements and Raviart-Thomas elements have been considered on uniform triangular and rectangular meshes. Numerical experiments reveal that many superconvergence properties of the standard Galerkin method are preserved by the least-squares finite element method. (English)
Keyword: least-squares finite element method
Keyword: mixed finite element method
Keyword: natural superconvergence
Keyword: Raviart-Thomas element
Keyword: Poisson equation
Keyword: Lagrange elements
Keyword: triangular and rectangular meshes
Keyword: numerical experiments
Keyword: Galerkin method
MSC: 35J05
MSC: 65N12
MSC: 65N30
idZBL: Zbl 1212.65419
idMR: MR2530542
DOI: 10.1007/s10492-009-0016-6
.
Date available: 2010-07-20T13:04:07Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140363
.
Reference: [1] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics.Wiley Interscience, John Wiley & Sons New York (2000). MR 1885308
Reference: [2] Babuška, I.: Error bounds for finite element method.Numer. Math. 16 (1971), 322-333. MR 0288971, 10.1007/BF02165003
Reference: [3] Babuška, I., Strouboulis, T.: The Finite Element Method and its Reliability.Clarendon Press Oxford (2001). MR 1857191
Reference: [4] Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K.: Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace, Poisson, and the elasticity equations.Numer. Methods Partial Differ. Equations 12 (1996), 347-392. MR 1388445, 10.1002/num.1690120303
Reference: [5] Bedivan, D. M.: Error estimates for least squares finite element methods.Comput. Math. Appl. 43 (2002), 1003-1020. Zbl 1050.65098, MR 1892481, 10.1016/S0898-1221(02)80009-8
Reference: [6] Bochev, P. B., Gunzburger, M. D.: Finite element methods of least-squares type.SIAM Rev. 40 (1998), 789-837. Zbl 0914.65108, MR 1659689, 10.1137/S0036144597321156
Reference: [7] Brandts, J. H.: Superconvergence and a posteriori error estimation for triangular mixed finite elements.Numer. Math. 68 (1994), 311-324. Zbl 0823.65103, MR 1313147, 10.1007/s002110050064
Reference: [8] Brandts, J. H.: Superconvergence for triangular order $k=1$ Raviart-Thomas mixed finite elements and for triangular standard quadratic finite element methods.Appl. Numer. Math. 34 (2000), 39-58. Zbl 0948.65120, MR 1755693, 10.1016/S0168-9274(99)00034-3
Reference: [9] Brandts, J. H., Chen, Y. P.: Superconvergence of least-squares mixed finite element methods.Int. J. Numer. Anal. Model. 3 (2006), 303-311. MR 2237884
Reference: [10] Brandts, J. H., Chen, Y. P., Yang, J.: A note on least-squares mixed finite elements in relation to standard and mixed finite elements.IMA J. Numer. Anal. 26 (2006), 779-789. Zbl 1106.65102, MR 2269196, 10.1093/imanum/dri048
Reference: [11] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers.Rev. Franc. Automat. Inform. Rech. Operat. 8 (1974), 129-151. Zbl 0338.90047, MR 0365287
Reference: [12] Brezzi, F., J. Douglas, Jr., Fortin, M., Marini, L. D.: Efficient rectangular mixed finite elements in two and three space variables.Mathematical Modelling and Numerical Analysis 21 (1987), 581-604. MR 0921828, 10.1051/m2an/1987210405811
Reference: [13] Brezzi, F., J. Douglas, Jr., Marini, L. D.: Two families of mixed finite elements for second order elliptic problems.Numer. Math. 47 (1985), 217-235. Zbl 0599.65072, MR 0799685, 10.1007/BF01389710
Reference: [14] Cai, Z., Ku, J.: The $L^2$ norm error estimates for the div least-squares method.SIAM J. Numer. Anal. 44 (2006), 1721-1734. Zbl 1138.76053, MR 2257124, 10.1137/050636504
Reference: [15] Cai, Z., Lazarov, R. D., Manteuffel, T. A., McCormick, S. F.: First-order system least squares for second-order partial differential equations. I.SIAM J. Numer. Anal. 31 (1994), 1785-1799. Zbl 0813.65119, MR 1302685, 10.1137/0731091
Reference: [16] Carey, G. F., Shen, Y.: Convergence studies of least-squares finite elements for first-order systems.Commun. Appl. Numer. Methods 5 (1989), 427-434. Zbl 0684.65083, 10.1002/cnm.1630050702
Reference: [17] Chen, C. M.: Structure Theory of Superconvergence of Finite Elements.Hunan Science Press Hunan (2001), Chinese. MR 0840307
Reference: [18] Chen, C. M., Huang, Y. Q.: High Accuracy Theory of Finite Element Methods.Hunan Science and Technology Press Hunan (1995), Chinese.
Reference: [19] Chen, Y.: Superconvergence of mixed finite element methods for optimal control problems.Math. Comput. 77 (2008), 1269-1291. Zbl 1193.49029, MR 2398768, 10.1090/S0025-5718-08-02104-2
Reference: [20] Chen, Z.: Finite Element Methods and Their Applications. Scientific Computation.Springer Berlin (2005). MR 2158541
Reference: [21] Douglas, J., Dupont, T.: Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces.Numer. Math. 22 (1974), 99-109. Zbl 0331.65051, MR 0362922, 10.1007/BF01436724
Reference: [22] Douglas, J., Dupont, T., Wahlbin, L.: Optimal $L^\infty$ error estimates for Galerkin approximations to solutions of two-point boundary value problems.Math. Comput. 29 (1975), 475-483. MR 0371077
Reference: [23] Douglas, J., Wang, J.: Superconvergence of mixed finite element methods on rectangular domains.Calcolo 26 (1989), 121-133. Zbl 0714.65084, MR 1083049, 10.1007/BF02575724
Reference: [24] Durán, R.: Superconvergence for rectangular mixed finite elements.Numer. Math. 58 (1990), 287-298. MR 1075159, 10.1007/BF01385626
Reference: [25] Ewing, R. E., Lazarov, R. D., Wang, J.: Superconvergence of the velocity along the Gauss lines in mixed finite element methods.SIAM J. Numer. Anal. 28 (1991), 1015-1029. Zbl 0733.65065, MR 1111451, 10.1137/0728054
Reference: [26] Ewing, R. E., Liu, M. M., Wang, J.: Superconvergence of mixed finite element approximations over quadrilaterals.SIAM J. Numer. Anal. 36 (1998), 772-787. Zbl 0926.65107, MR 1681041, 10.1137/S0036142997322801
Reference: [27] Ewing, R. E., Wang, J.: Analysis of mixed finite element methods on locally refined grids.Numer. Math. 63 (1992), 183-194. Zbl 0772.65071, MR 1182973, 10.1007/BF01385855
Reference: [28] Gastaldi, L., Nochetto, R. H.: Optimal $L^\infty$-error estimates for nonconforming and mixed finite element methods of lowest order.Numer. Math. 50 (1987), 587-611. MR 0880337, 10.1007/BF01408578
Reference: [29] Gastaldi, L., Nochetto, R. H.: Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations.RAIRO, Modélisation Math. Anal. Numér. 23 (1989), 103-128. Zbl 0673.65060, MR 1015921, 10.1051/m2an/1989230101031
Reference: [30] Jiang, B.-N.: The Least-Squares Finite Element Method. Theory and Applications in Computational Fluid Dynamics and Electromagnetics.Springer Berlin (1998). MR 1639101
Reference: [31] Křížek, M., Neittaanmäki, P.: Bibliography on superconvergence.Finite element methods. Superconvergence, post-processing, and a posteriori estimates M. Kř'ižek, P. Neittaanmäki, R. Stenberg Marcel Dekker New York (1998), 315-348. MR 1602730
Reference: [32] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, 50.Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1990). MR 1066462
Reference: [33] Li, J., Wheeler, M. F.: Uniform convergence and superconvergence of mixed finite element methods on anisotropically refined grids.SIAM J. Numer. Anal. 38 (2000), 770-798. Zbl 0974.65106, MR 1781203, 10.1137/S0036142999351212
Reference: [34] Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement.Science Press Beijing (2006).
Reference: [35] Lin, Q., Pan, J. H.: High accuracy for mixed finite element methods in Raviart-Thomas element.J. Comput. Math. 14 (1996), 175-182. Zbl 0846.65062, MR 1399911
Reference: [36] Lin, Q., Yan, N.: Construction and Analysis of High Efficient Finite Elements.Hebei University Press Hebei (1996), Chinese.
Reference: [37] Lin, R., Zhang, Z.: Natural superconvergent points of triangular finite elements.Numer. Methods Partial Differ. Equations 20 (2004), 864-906. Zbl 1068.65123, MR 2092411, 10.1002/num.20013
Reference: [38] Lin, R., Zhang, Z.: Convergence analysis for least-squares approximations to solutions of second-order two-point boundary value problems.Submitted.
Reference: [39] Pehlivanov, A. I., Carey, G. F.: Error estimates for least-squares mixed finite elements.RAIRO, Modélisation Math. Anal. Numér. 28 (1994), 499-516. Zbl 0820.65065, MR 1295584, 10.1051/m2an/1994280504991
Reference: [40] Pehlivanov, A. I., Carey, G. F., Lazarov, R. D.: Least-squares mixed finite elements for second-order elliptic problems.SIAM J. Numer. Anal. 31 (1994), 1368-1377. Zbl 0806.65108, MR 1293520, 10.1137/0731071
Reference: [41] Pehlivanov, A. I., Carey, G. F., Lazarov, R. D., Shen, Y.: Convergence analysis of least-squares mixed finite elements.Computing 51 (1993), 111-123. Zbl 0790.65079, MR 1248894, 10.1007/BF02243846
Reference: [42] Raviart, P. A., Thomas, J. M.: A mixed finite element method for second order elliptic problems.In: Mathematical Aspects of the Finite Element Method. Lecture Notes Math. 606 I. Galligani, E. Magenes Springer Berlin (1977), 292-315. MR 0483555
Reference: [43] Verfürth, R.: A Review of Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques.Wiley-Teubner Chichester-Stuttgart (1996).
Reference: [44] Wahlbin, L. B.: Superconvergence in Galerkin Finite Flement Methods. Lecture Notes Math. 1605.Springer Berlin (1995). MR 1439050
Reference: [45] Wheeler, M. F.: An optimal $L_{\infty}$ error estimate for Galerkin approximations to solutions of two-point boundary value problems.SIAM J. Numer. Anal. 10 (1973), 914-917. Zbl 0266.65061, MR 0343659, 10.1137/0710077
Reference: [46] Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods.Science Press Beijing (2008).
Reference: [47] Zhang, Z.: Derivative superconvergence points in finite element solutions of Poisson equation for the serendipity and intermediate families. A theoretical justification.Math. Comput. 67 (1998), 541-552. MR 1459393, 10.1090/S0025-5718-98-00942-9
Reference: [48] Zhang, Z.: Recovery techniques in finite element methods.In: Adaptive Computations: Theory and Algorithms T. Tang, J. Xu Science Publisher (2007), 297-365.
Reference: [49] Zhu, Q.: High Accuracy and Post-Processing Theory of the Finite Element Method.Science Press Beijing (2008), Chinese.
Reference: [50] Zienkiewicz, O. C., Taylor, R. L., Zhu, J. Z.: The Finite Element Method, 6th ed.McGraw-Hill London (2005). MR 3292660
.

Files

Files Size Format View
AplMat_54-2009-3_6.pdf 301.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo