Title:
|
Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations (English) |
Author:
|
Yan, Ningning |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
54 |
Issue:
|
3 |
Year:
|
2009 |
Pages:
|
267-283 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement. (English) |
Keyword:
|
optimal control |
Keyword:
|
integral equation |
Keyword:
|
Galerkin method |
Keyword:
|
superconvergence |
Keyword:
|
a posteriori error estimates |
Keyword:
|
constrained optimal control problems |
Keyword:
|
adaptive mesh refinement |
MSC:
|
49J21 |
MSC:
|
49M25 |
MSC:
|
49M30 |
MSC:
|
65K10 |
MSC:
|
65N30 |
MSC:
|
65R20 |
idZBL:
|
Zbl 1212.65256 |
idMR:
|
MR2530543 |
DOI:
|
10.1007/s10492-009-0017-5 |
. |
Date available:
|
2010-07-20T13:05:50Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140364 |
. |
Reference:
|
[1] Alt, W.: On the approximation of infinite optimisation problems with an application to optimal control problems.Appl. Math. Optimization 12 (1984), 15-27. MR 0756510, 10.1007/BF01449031 |
Reference:
|
[2] Atkinson, K. E.: The Numerical Solution of Integral Equations of the Second Kind.Cambridge University Press Cambridge (1997). Zbl 0899.65077, MR 1464941 |
Reference:
|
[3] Babuška, I., A. K. Aziz \rm(eds.): The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations.Academic Press New York (1972). MR 0347104 |
Reference:
|
[4] Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: Basic concept.SIAM J. Control Optim. 39 (2000), 113-132. Zbl 0967.65080, MR 1780911, 10.1137/S0363012999351097 |
Reference:
|
[5] Brunner, H., Yan, N.: On global superconvergence of iterated collocation solutions to linear second-kind Volterra integral equations.J. Comput. Appl. Math. 67 (1996), 185-189. Zbl 0857.65145, MR 1388148, 10.1016/0377-0427(96)00012-X |
Reference:
|
[6] Brunner, H., Yan, N.: Finite element methods for optimal control problems governed by integral equations and integro-differential equations.Numer. Math. 101 (2005), 1-27. Zbl 1076.65057, MR 2194716, 10.1007/s00211-005-0608-3 |
Reference:
|
[7] Chen, Y., Liu, W.: Error estimates and superconvergence of mixed finite element for quadratic optimal control.Int. J. Numer. Anal. Model. 3 (2006), 311-321. Zbl 1125.49026, MR 2237885 |
Reference:
|
[8] Chen, Y., Yi, N., Liu, W.: A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations.SIAM J. Numer. Anal. 46 (2008), 2254-2275. Zbl 1175.49003, MR 2421035, 10.1137/070679703 |
Reference:
|
[9] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.North-Holland Amsterdam (1978). Zbl 0383.65058, MR 0520174 |
Reference:
|
[10] Du, L., Yan, N.: High-accuracy finite element method for optimal control problem.J. Syst. Sci. Complex. 14 (2001), 106-110. Zbl 0983.49022, MR 1836999 |
Reference:
|
[11] Falk, F. S.: Approximation of a class of optimal control problems with order of convergence estimates.J. Math. Anal. Appl. 44 (1973), 28-47. Zbl 0268.49036, MR 0686788, 10.1016/0022-247X(73)90022-X |
Reference:
|
[12] French, D. A., King, J. T.: Approximation of an elliptic control problem by the finite element method.Numer. Funct. Anal. Appl. Optim. 12 (1991), 299-314. Zbl 0724.65069, MR 1143001, 10.1080/01630569108816430 |
Reference:
|
[13] Ge, L., Liu, W., Yang, D.: An equivalent a posteriori error estimate for a constrained optimal control problem.(to appear). |
Reference:
|
[14] Krasnosel'skii, M. A., Zabreiko, P. P., Pustyl'nik, E. I., Sobolevskii, P. E.: Integral Operators in Spaces of Summable Functions.Noordhoff International Publishing Leyden (1976). MR 0385645 |
Reference:
|
[15] Kress, R.: Linear Integral Equations, 2nd Edition.Springer New York (1999). MR 1723850 |
Reference:
|
[16] Li, R., Liu, W., Yan, N.: A posteriori error estimates of recovery type for distributed convex optimal control problems.J. Sci. Comput. 33 (2007), 155-182. Zbl 1128.65048, MR 2342593, 10.1007/s10915-007-9147-7 |
Reference:
|
[17] Yan, Q. Lin N.: Structure and Analysis for Efficient Finite Element Methods.Publishers of Hebei University Hebei (1996), Chinese. |
Reference:
|
[18] Lin, Q., Zhang, S., Yan, N.: An acceleration method for integral equations by using interpolation post-processing.Adv. Comput. Math. 9 (1998), 117-129. Zbl 0920.65087, MR 1662762, 10.1023/A:1018925103993 |
Reference:
|
[19] Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations.Springer Berlin (1971). Zbl 0203.09001, MR 0271512 |
Reference:
|
[20] Lions, J.-L.: Some Methods in the Mathematical Analysis of Systems and their Control.Science Press Beijing (1981). Zbl 0542.93034, MR 0664760 |
Reference:
|
[21] Liu, W., Yan, N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs.Science Press Beijing (2008). |
Reference:
|
[22] Liu, W., Yan, N.: A posteriori error estimates for convex boundary control problems.SIAM J. Numer. Anal. 39 (2001), 73-99. Zbl 0988.49018, MR 1860717, 10.1137/S0036142999352187 |
Reference:
|
[23] Liu, W. B., Yan, N.: A posteriori error estimates for distributed convex optimal control problems.Adv. Comput. Math. 15 (2001), 285-309. Zbl 1008.49024, MR 1887737, 10.1023/A:1014239012739 |
Reference:
|
[24] Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems.SIAM J. Control Optim. 43 (2004), 970-985. Zbl 1071.49023, MR 2114385, 10.1137/S0363012903431608 |
Reference:
|
[25] Neittaanmäki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications.Marcel Dekker New York (1994). MR 1275836 |
Reference:
|
[26] Tiba, D.: Lectures on the Optimal Control of Elliptic Equations.University of Jyväskylä Press Jyväskylä (1995). |
Reference:
|
[27] Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods.Science Press Beijing (2008). |
Reference:
|
[28] Yan, N.: Superconvergence and recovery type a posteriori error estimates for constrained convex optimal control problems.Advances in Scientific Computing and Applications Y. Lu, W. Sun, T. Tang Science Press Beijing/New York (2004), 408-419. |
Reference:
|
[29] Zabreiko, P. P., Koshelev, A. I., Krasnosel'skii, M. A., Mikhlin, S. G., Rakovshchik, L. S., Stet'senko, V. Ya.: Integral Equations. A Reference Text.Noordhoff International Publishing Leyden (1975). |
Reference:
|
[30] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates.Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382. Zbl 0769.73085, 10.1002/nme.1620330702 |
Reference:
|
[31] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates.Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382. Zbl 0769.73085, 10.1002/nme.1620330702 |
. |