Previous |  Up |  Next

Article

Title: Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations (English)
Author: Yan, Ningning
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 3
Year: 2009
Pages: 267-283
Summary lang: English
.
Category: math
.
Summary: In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement. (English)
Keyword: optimal control
Keyword: integral equation
Keyword: Galerkin method
Keyword: superconvergence
Keyword: a posteriori error estimates
Keyword: constrained optimal control problems
Keyword: adaptive mesh refinement
MSC: 49J21
MSC: 49M25
MSC: 49M30
MSC: 65K10
MSC: 65N30
MSC: 65R20
idZBL: Zbl 1212.65256
idMR: MR2530543
DOI: 10.1007/s10492-009-0017-5
.
Date available: 2010-07-20T13:05:50Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140364
.
Reference: [1] Alt, W.: On the approximation of infinite optimisation problems with an application to optimal control problems.Appl. Math. Optimization 12 (1984), 15-27. MR 0756510, 10.1007/BF01449031
Reference: [2] Atkinson, K. E.: The Numerical Solution of Integral Equations of the Second Kind.Cambridge University Press Cambridge (1997). Zbl 0899.65077, MR 1464941
Reference: [3] Babuška, I., A. K. Aziz \rm(eds.): The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations.Academic Press New York (1972). MR 0347104
Reference: [4] Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: Basic concept.SIAM J. Control Optim. 39 (2000), 113-132. Zbl 0967.65080, MR 1780911, 10.1137/S0363012999351097
Reference: [5] Brunner, H., Yan, N.: On global superconvergence of iterated collocation solutions to linear second-kind Volterra integral equations.J. Comput. Appl. Math. 67 (1996), 185-189. Zbl 0857.65145, MR 1388148, 10.1016/0377-0427(96)00012-X
Reference: [6] Brunner, H., Yan, N.: Finite element methods for optimal control problems governed by integral equations and integro-differential equations.Numer. Math. 101 (2005), 1-27. Zbl 1076.65057, MR 2194716, 10.1007/s00211-005-0608-3
Reference: [7] Chen, Y., Liu, W.: Error estimates and superconvergence of mixed finite element for quadratic optimal control.Int. J. Numer. Anal. Model. 3 (2006), 311-321. Zbl 1125.49026, MR 2237885
Reference: [8] Chen, Y., Yi, N., Liu, W.: A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations.SIAM J. Numer. Anal. 46 (2008), 2254-2275. Zbl 1175.49003, MR 2421035, 10.1137/070679703
Reference: [9] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.North-Holland Amsterdam (1978). Zbl 0383.65058, MR 0520174
Reference: [10] Du, L., Yan, N.: High-accuracy finite element method for optimal control problem.J. Syst. Sci. Complex. 14 (2001), 106-110. Zbl 0983.49022, MR 1836999
Reference: [11] Falk, F. S.: Approximation of a class of optimal control problems with order of convergence estimates.J. Math. Anal. Appl. 44 (1973), 28-47. Zbl 0268.49036, MR 0686788, 10.1016/0022-247X(73)90022-X
Reference: [12] French, D. A., King, J. T.: Approximation of an elliptic control problem by the finite element method.Numer. Funct. Anal. Appl. Optim. 12 (1991), 299-314. Zbl 0724.65069, MR 1143001, 10.1080/01630569108816430
Reference: [13] Ge, L., Liu, W., Yang, D.: An equivalent a posteriori error estimate for a constrained optimal control problem.(to appear).
Reference: [14] Krasnosel'skii, M. A., Zabreiko, P. P., Pustyl'nik, E. I., Sobolevskii, P. E.: Integral Operators in Spaces of Summable Functions.Noordhoff International Publishing Leyden (1976). MR 0385645
Reference: [15] Kress, R.: Linear Integral Equations, 2nd Edition.Springer New York (1999). MR 1723850
Reference: [16] Li, R., Liu, W., Yan, N.: A posteriori error estimates of recovery type for distributed convex optimal control problems.J. Sci. Comput. 33 (2007), 155-182. Zbl 1128.65048, MR 2342593, 10.1007/s10915-007-9147-7
Reference: [17] Yan, Q. Lin N.: Structure and Analysis for Efficient Finite Element Methods.Publishers of Hebei University Hebei (1996), Chinese.
Reference: [18] Lin, Q., Zhang, S., Yan, N.: An acceleration method for integral equations by using interpolation post-processing.Adv. Comput. Math. 9 (1998), 117-129. Zbl 0920.65087, MR 1662762, 10.1023/A:1018925103993
Reference: [19] Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations.Springer Berlin (1971). Zbl 0203.09001, MR 0271512
Reference: [20] Lions, J.-L.: Some Methods in the Mathematical Analysis of Systems and their Control.Science Press Beijing (1981). Zbl 0542.93034, MR 0664760
Reference: [21] Liu, W., Yan, N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs.Science Press Beijing (2008).
Reference: [22] Liu, W., Yan, N.: A posteriori error estimates for convex boundary control problems.SIAM J. Numer. Anal. 39 (2001), 73-99. Zbl 0988.49018, MR 1860717, 10.1137/S0036142999352187
Reference: [23] Liu, W. B., Yan, N.: A posteriori error estimates for distributed convex optimal control problems.Adv. Comput. Math. 15 (2001), 285-309. Zbl 1008.49024, MR 1887737, 10.1023/A:1014239012739
Reference: [24] Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems.SIAM J. Control Optim. 43 (2004), 970-985. Zbl 1071.49023, MR 2114385, 10.1137/S0363012903431608
Reference: [25] Neittaanmäki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications.Marcel Dekker New York (1994). MR 1275836
Reference: [26] Tiba, D.: Lectures on the Optimal Control of Elliptic Equations.University of Jyväskylä Press Jyväskylä (1995).
Reference: [27] Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods.Science Press Beijing (2008).
Reference: [28] Yan, N.: Superconvergence and recovery type a posteriori error estimates for constrained convex optimal control problems.Advances in Scientific Computing and Applications Y. Lu, W. Sun, T. Tang Science Press Beijing/New York (2004), 408-419.
Reference: [29] Zabreiko, P. P., Koshelev, A. I., Krasnosel'skii, M. A., Mikhlin, S. G., Rakovshchik, L. S., Stet'senko, V. Ya.: Integral Equations. A Reference Text.Noordhoff International Publishing Leyden (1975).
Reference: [30] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates.Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382. Zbl 0769.73085, 10.1002/nme.1620330702
Reference: [31] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates.Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382. Zbl 0769.73085, 10.1002/nme.1620330702
.

Files

Files Size Format View
AplMat_54-2009-3_7.pdf 271.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo