Previous |  Up |  Next

Article

Title: Global superconvergence of finite element methods for parabolic inverse problems (English)
Author: Azari, Hossein
Author: Zhang, Shuhua
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 3
Year: 2009
Pages: 285-294
Summary lang: English
.
Category: math
.
Summary: In this article we transform a large class of parabolic inverse problems into a nonclassical parabolic equation whose coefficients consist of trace type functionals of the solution and its derivatives subject to some initial and boundary conditions. For this nonclassical problem, we study finite element methods and present an immediate analysis for global superconvergence for these problems, on basis of which we obtain a posteriori error estimators. (English)
Keyword: inverse problem
Keyword: global superconvergence
Keyword: finite element method
MSC: 35K10
MSC: 35R30
MSC: 65M06
MSC: 65M32
MSC: 65M60
MSC: 76R50
idZBL: Zbl 1212.35498
idMR: MR2530544
DOI: 10.1007/s10492-009-0018-4
.
Date available: 2010-07-20T13:06:58Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140365
.
Reference: [1] Alvarez, C., Conca, C., Friz, L., Kavian, O., Ortega, J. H.: Identification of immersed obstacles via boundary measurements.Inverse Probl. 21 (2005), 1531-1552. Zbl 1088.35080, MR 2173409
Reference: [2] Azari, H., Allegretto, W., Lin, Y., Zhang, S.: Numerical procedures for recovering a time dependent coefficient in a parabolic differential equation.Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 11 (2004), 181-199. Zbl 1055.35132, MR 2049776
Reference: [3] Azari, H., Li, Ch., Nie, Y., Zhang, S.: Determination of an unknown coefficient in a parabolic inverse problem.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 11 (2004), 665-674. Zbl 1059.35161, MR 2077110
Reference: [4] Azari, H., Zhang, S.: Identifying a time dependent unknown coefficient in a parabolic inverse problem.Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms. Suppl. 12b (2005), 32-43. MR 2269155
Reference: [5] Cannon, J. R., Yin, H.-M.: A class of nonlinear non-classical parabolic equations.J. Differ. Equations 79 (1989), 266-288. Zbl 0702.35120, MR 1000690, 10.1016/0022-0396(89)90103-4
Reference: [6] Cannon, J. R., Yin, H.-M.: Numerical solutions of some parabolic inverse problems.Numer. Methods Partial Differ. Equations 6 (1990), 177-191. Zbl 0709.65105, MR 1051841, 10.1002/num.1690060207
Reference: [7] Canuto, B., Kavian, O.: Determining coefficients in a class of heat equations via boundary measurements.SIAM J. Math. Anal. 32 (2001), 963-986 (electronic). Zbl 0981.35096, MR 1828313, 10.1137/S003614109936525X
Reference: [8] J. Douglas, Jr., B. F. Jones, Jr.: The determination of a coefficient in a parabolic differential equation. II. Numerical approximation.J. Math. Mech. 11 (1962), 919-926. Zbl 0112.32603, MR 0153988
Reference: [9] B. F. Jones, Jr.: The determination of a coefficient in a parabolic differential equation. I. Existence and uniqueness.J. Math. Mech. 11 (1962), 907-918. Zbl 0112.32602, MR 0153987
Reference: [10] Keung, Y. L., Zou, J.: Numerical identification of parameters in parabolic systems.Inverse Probl. 14 (1998), 83-100. Zbl 0894.35127, MR 1607632
Reference: [11] Khachfe, R. A., Jarny, Y.: Numerical solution of 2-D nonlinear inverse heat conduction problems using finite-element techniques.Numer. Heat Transfer, Part B: Fundamentals 37 (2000), 45-67. 10.1080/104077900275549
Reference: [12] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods.Hebei University Publishers Baoding (1996), Chinese.
Reference: [13] Lin, Q., Zhu, Q.: The Preprocessing and Postprocessing for the Finite Element Method.Shanghai Scientific & Technical Publishers Shanghai (1994), Chinese.
Reference: [14] Prilepko, A. I., Orlovskii, D. G.: Determination of the parameter of an evolution equation and inverse problems of mathematical physics I.Differ. Equations 21 (1985), 96-104. MR 0777788
Reference: [15] Ramm, A. G.: An inverse problem for the heat equation.J. Math. Anal. Appl. 264 (2001), 691-697. Zbl 0987.35164, MR 1876759, 10.1006/jmaa.2001.7781
Reference: [16] Ramm, A. G.: A non-overdetermined inverse problem of finding the potential from the spectral function.Int. J. Differ. Equ. Appl. 3 (2001), 15-29. Zbl 1048.35137, MR 1852465
Reference: [17] Ramm, A. G.: Inverse problems for parabolic equations applications.Aust. J. Math. Anal. Appl. 2 (2005), Art. 10 (electronic). Zbl 1162.35384, MR 2174516
Reference: [18] Ramm, A. G., Koshkin, S. V.: An inverse problem for an abstract evolution equation.Appl. Anal. 79 (2001), 475-482. Zbl 1020.35120, MR 1880954, 10.1080/00036810108840973
Reference: [19] Xiong, X. T., Fu, C. L., Li, H. F.: Central difference schemes in time and error estimate on a non-standard inverse heat conduction problem.Appl. Math. Comput. 157 (2004), 77-91. Zbl 1068.65117, MR 2085525, 10.1016/j.amc.2003.08.028
.

Files

Files Size Format View
AplMat_54-2009-3_8.pdf 235.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo