Previous |  Up |  Next

Article

Title: On congruences and ideals of partially ordered quasigroups (English)
Author: Demko, Milan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 3
Year: 2008
Pages: 637-650
Summary lang: English
.
Category: math
.
Summary: Some results concerning congruence relations on partially ordered quasigroups (especially, Riesz quasigroups) and ideals of partially ordered loops are presented. These results generalize the assertions which were proved by Fuchs in [5] for partially ordered groups and Riesz groups. (English)
Keyword: partially ordered quasigroup
Keyword: partially ordered loop
Keyword: Riesz quasigroup
Keyword: congruence relation
Keyword: ideal
MSC: 06F99
MSC: 20N05
idZBL: Zbl 1174.06326
idMR: MR2455927
.
Date available: 2010-07-20T13:56:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140410
.
Reference: [1] Belousov, V. D.: Foundations of the theory of quasigroups and loops.Nauka Moscow (1967), Russian. MR 0218483
Reference: [2] Birkhoff, G.: Lattice Theory, Amer. Math. Soc., Providence, RI.(1967). MR 0227053
Reference: [3] Burris, S., Sankappanavar, A.: A Course in Universal Algebra.Springer-Verlag New York, Heidelberg, Berlin (1981). Zbl 0478.08001
Reference: [4] Demko, M.: Lexicographic product decompositions of partially ordered quasigroups.Math. Slovaca 51 (2001), 13-24. Zbl 0986.06012, MR 1817719
Reference: [5] Fuchs, L.: Riesz groups.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 19 (1965), 1-34. Zbl 0125.28703, MR 0180609
Reference: [6] Kiokemeister, F.: A theory of normality for quasigroups.Amer. J. Math. 70 (1948), 99-106. MR 0023252, 10.2307/2371934
Reference: [7] Lihová, J.: On Riesz groups.Tatra Mt. Math. Publ. 27 (2003), 163-176. MR 2026649
Reference: [8] Naik, N., Swammy, B. L. N., Misra, S. S.: Lattice ordered commutative loops.Math. Semin. Notes, Kobe Univ. 8 (1980), 57-71. MR 0590165
Reference: [9] Naik, N., Swammy, B. L. N.: Ideal theory in lattice ordered commutative Moufang loops.Math. Semin. Notes, Kobe Univ. 8 (1980), 443-453. MR 0615863
Reference: [10] Testov, V. A.: Left-positive Riesz quasigroups. Problems in the theory of webs and quasigroups.158 (1985), Gos. univ., Kalinin 81-83 Russian. MR 0857474
.

Files

Files Size Format View
CzechMathJ_58-2008-3_4.pdf 258.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo