Previous |  Up |  Next

Article

Title: Extreme preservers of maximal column rank inequalities of matrix sums over semirings (English)
Author: Song, Seok-Zun
Author: Park, Kwon-Ryong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 3
Year: 2008
Pages: 693-703
Summary lang: English
.
Category: math
.
Summary: We characterize linear operators that preserve sets of matrix ordered pairs which satisfy extreme properties with respect to maximal column rank inequalities of matrix sums over semirings. (English)
Keyword: linear operator
Keyword: rank inequality
Keyword: maximal column rank.
MSC: 15A03
MSC: 15A04
MSC: 15A45
idZBL: Zbl 1174.15001
idMR: MR2455931
.
Date available: 2010-07-20T13:59:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140414
.
Reference: [1] Beasley, L. B., Guterman, A. E.: Rank inequalities over semirings.J. Korean Math. Soc. 42 (2005), 223-241. Zbl 1127.15001, MR 2121497, 10.4134/JKMS.2005.42.2.223
Reference: [2] Beasley, L. B., Guterman, A. E.: Linear preservers of extremes of rank inequalities over semirings: Factor rank.J. Math. Sci., New York 131 (2005), 5919-5938. MR 2153693, 10.1007/s10958-005-0451-1
Reference: [3] Beasley, L. B., Guterman, A. E., Neal, C. L.: Linear preservers for Sylvester and Frobenius bounds on matrix rank.Rocky Mt. J. Math. 36 (2006), 67-80. Zbl 1134.15003, MR 2228184, 10.1216/rmjm/1181069488
Reference: [4] Beasley, L. B., Lee, S.-G., Song, S.-Z.: Linear operators that preserve pairs of matrices which satisfy extreme rank properties.Linear Algebra Appl. 350 (2002), 263-272. Zbl 1004.15025, MR 1906757
Reference: [5] Beasley, L. B., Pullman, N. J.: Semiring rank versus column rank.Linear Algebra Appl. 101 (1988), 33-48. Zbl 0642.15002, MR 0941294
Reference: [6] Guterman, A. E.: Linear preservers for matrix inequalities and partial orderings.Linear Algebra Appl. 331 (2001), 75-87. Zbl 0985.15018, MR 1832488
Reference: [7] Marsaglia, G., Styan, P.: When does $\operatorname{rank}(A+B)=\operatorname{rank}(A)+\operatorname{rank}(B)$?.Canad. Math. Bull. 15 (1972), 451-452. MR 0311674, 10.4153/CMB-1972-082-8
Reference: [8] al., P. Pierce at: A survey of linear preserver problems.Linear Multilinear Algebra 33 (1992), 1-119. 10.1080/03081089208818176
Reference: [9] Song, S.-Z.: Linear operators that preserve maximal column ranks of nonnegative integer matrices.Proc. Am. Math. Soc. 126 (1998), 2205-2211. Zbl 0896.15009, MR 1443409, 10.1090/S0002-9939-98-04308-1
.

Files

Files Size Format View
CzechMathJ_58-2008-3_8.pdf 264.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo