Previous |  Up |  Next

Article

Title: On a class of Szász-Mirakyan type operators (English)
Author: Walczak, Zbigniew
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 3
Year: 2008
Pages: 705-716
Summary lang: English
.
Category: math
.
Summary: The actual construction of the Szász-Mirakyan operators and its various modifications require estimations of infinite series which in a certain sense restrict their usefulness from the computational point of view. Thus the question arises whether the Szász-Mirakyan operators and their generalizations cannot be replaced by a finite sum. In connection with this question we propose a new family of linear positive operators. (English)
Keyword: linear positive operator
Keyword: polynomial weighted space
MSC: 41A36
idZBL: Zbl 1174.41023
idMR: MR2455932
.
Date available: 2010-07-20T14:01:29Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140415
.
Reference: [1] Atakut, C., Ispir, N.: The order of approximation by certain linear positive operators.Math. Balk., New Ser. 15 (2001), 25-33. Zbl 1040.41007, MR 1882520
Reference: [2] Becker, M.: Global approximation theorems for Szasz-Mirakjan and Baskakov operators in polynomial weight spaces.Indiana Univ. Math. J. 27 (1978), 127-142. Zbl 0358.41006, MR 0493079, 10.1512/iumj.1978.27.27011
Reference: [3] Becker, M., Kucharski, D., Nessel, R. J.: Global Approximation theorems for the Szasz-Mirakjan operators in exponential weight spaces. Linear Spaces and Approximation (Proc. Conf. Oberwolfach, 1977).ISNM, Int. Ser. Numer. Math. 40 (1978), 319-333. MR 0499919
Reference: [4] Ciupa, A.: On the approximation by Favard-Szasz type operators.Rev. Anal. Numér. Théor. Approx. 25 (1996), 57-61. Zbl 0908.41010, MR 1607327
Reference: [5] Ciupa, A.: Approximation by a generalized Szasz type operators.J. Comput. Anal. Appl. 5 (2003), 413-424. MR 2000071
Reference: [6] Vore, R. A. De, Lorentz, G. G.: Constructive Approximation.Springer Berlin (1993). MR 1261635
Reference: [7] Feng, G.: Weighted approximation on Szasz-type operators.Anal. Theory Appl. 19 (2003), 47-54. Zbl 1108.41301, MR 1996352, 10.1007/BF02835477
Reference: [8] Feng, G.: A characterization of pointwise approximation for linear combinations of Szász-type operators.Chinese Quart. J. Math. 19 (2004), 379-384. MR 2131301
Reference: [9] Gupta, P., Gupta, V.: Rate of convergence on Baskakov-Szasz type operators.Fasc. Math. 31 (2001), 37-44. MR 1860546
Reference: [10] Gupta, V.: Error estimation for mixed summation integral type operators.J. Math. Anal. Appl. 313 (2006), 632-641. Zbl 1092.41009, MR 2183324, 10.1016/j.jmaa.2005.05.017
Reference: [11] Gupta, V., Maheshwari, P.: On Baskakov-Szasz type operators.Kyungpook Math. J. 43 (2003), 315-325. Zbl 1145.41307, MR 2003476
Reference: [12] Gupta, V., Pant, R. P.: Rate of convergence for the modified Szasz-Mirakyan operators on functions of bounded variation.J. Math. Anal. Appl. 233 (1999), 476-483. Zbl 0931.41012, MR 1689649, 10.1006/jmaa.1999.6289
Reference: [13] Gupta, V., Vasishtha, V., Gupta, M. K.: Rate of convergence of the Szasz-Kantorovitch-Bezier operators for bounded variation functions.Publ. Inst. Math., Nouv. Sér. 72 (2002), 137-143. Zbl 1052.41005, MR 1997619, 10.2298/PIM0272137G
Reference: [14] Guo, S.: On the rate of convergence of the integrated Meyer-König and Zeller operators for functions of bounded variation.J. Approximation Theory 56 (1989), 245-255. Zbl 0677.41023, MR 0990339, 10.1016/0021-9045(89)90114-7
Reference: [15] Guo, S., Li, C., Sun, Y., Yand, G., Yue, S.: Pointwise estimate for Szasz-type operators.J. Approximation Theory 94 (1998), 160-171. MR 1637831, 10.1006/jath.1998.3200
Reference: [16] Herzog, M.: Approximation theorems for modified Szasz-Mirakjan operators in polynomial weight spaces.Matematiche 54 (1999), 77-90. Zbl 0960.41015, MR 1776330
Reference: [17] Ispir, N.: Weighted approximation by modified Favard-Szász operators.Int. Math. J. 3 (2003),1053-1060. MR 2005685
Reference: [18] Ispir, N., Atakut, C.: Approximation by modified Szasz-Mirakyan operators on weighted spaces.Proc. Indian Acad. Sci., Math. Sci. 112 (2002), 571-578. MR 1941893, 10.1007/BF02829690
Reference: [19] Lehnhoff, H. G.: On a modified Szasz-Mirakjan operator.J. Approximation Theory 42 (1984), 278-282. Zbl 0573.41034, MR 0765443, 10.1016/0021-9045(84)90045-5
Reference: [20] Lesniewicz, M., Rempulska, L.: Approximation by some operators of the Szasz-Mirakjan type in exponential weight spaces.Glas. Mat., III. Ser. 32 (1997), 57-69. Zbl 0880.41017, MR 1469620
Reference: [21] Li, S.: Local smoothness of functions and Baskakov-Durrmeyer operators.J. Approximation Theory 88 (1997), 139-153. Zbl 0872.41008, MR 1429969, 10.1006/jath.1996.3016
Reference: [22] Linsen, X., Xiaoping, Z.: Pointwise characterization for combinations of Baskakov operators.Approximation Theory Appl. 18 (2002), 76-89. MR 1928167
Reference: [23] Rempulska, L., Walczak, Z.: On modified Baskakov operators.Proc. A. Razmadze Math. Inst. 133( (2003), 109-117. Zbl 1042.41020, MR 2034442
Reference: [24] Rempulska, L., Walczak, Z.: Approximation by some operators of Szasz-Mirakyan type.Anal. Theory Appl. 20 (2004), 1-15. Zbl 1073.41021, MR 2574579, 10.1007/BF02835254
Reference: [25] Rempulska, L., Walczak, Z.: Modified Szasz-Mirakyan operators.Math. Balk., New Ser. 18 (2004), 53-63. Zbl 1079.41022, MR 2076077
Reference: [26] Sahai, A., Prasard, G.: On simultaneous approximation by modified Lupas operators.J. Approximation Theory 45 (1985), 122-128. MR 0813006, 10.1016/0021-9045(85)90039-5
Reference: [27] Totik, V.: Uniform approximation by Szász-Mirakjan type operators.Acta Math. 41 (1983), 291-307. Zbl 0513.41013, MR 0703742
Reference: [28] Walczak, Z.: On certain linear positive operators in exponential weighted spaces.Math. J. Toyama Univ. 25 (2002), 109-118. Zbl 1111.41017, MR 1963731
Reference: [29] Walczak, Z.: On certain positive linear operators in weighted polynomial spaces.Acta Math. 101 (2003), 179-191. MR 2018629
Reference: [30] Walczak, Z.: Approximation properties of certain linear positive operators in exponential weighted spaces.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 42 (2003), 123-130. Zbl 1054.41015, MR 2056027
Reference: [31] Walczak, Z.: Approximation by some linear positive operators of functions of two variables.Saitama Math. J. 21 (2003), 23-31. Zbl 1071.41023, MR 2068761
Reference: [32] Walczak, Z.: On the rate of convergence for modified Baskakov operators.Liet. matem. rink 44 (2004), 124-130. Zbl 1058.41007, MR 2116497
Reference: [33] Walczak, Z.: Approximation by some linear positive operators in polynomial weighted spaces.Publ. Math. Debrecen 64 (2004), 353-367. Zbl 1079.41023, MR 2058908
Reference: [34] Walczak, Z.: Approximation properties of certain linear positive operators in polynomial weighted spaces of functions of one and two variables.Publ. Elektrotehn. Fak. Univ. Beograd 15 (2004), 52-65. Zbl 1106.41020, MR 2104230
Reference: [35] Walczak, Z.: On the convergence of the modified Szasz-Mirakyan operators.Yokohama Math. J. 51 (2004), 11-18. Zbl 1063.41018, MR 2095839
Reference: [36] Walczak, Z.: On the rate of convergence for some linear operators.Hiroshima Math. J. 35 (2005), 115-124. Zbl 1079.41024, MR 2131378, 10.32917/hmj/1150922488
Reference: [37] Wood, B.: Uniform approximation with positive linear operators generated by binomial expansions.J. Approximation Theory 56 (1989), 48-58. Zbl 0677.41024, MR 0977873, 10.1016/0021-9045(89)90132-9
Reference: [38] Xiehua, S.: On the convergence of the modified Szasz-Mirakjan operator.Approximation Theory Appl. 10 (1994), 20-25. MR 1287450
.

Files

Files Size Format View
CzechMathJ_58-2008-3_9.pdf 252.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo