Previous |  Up |  Next

Article

Keywords:
linear positive operator; polynomial weighted space
Summary:
The actual construction of the Szász-Mirakyan operators and its various modifications require estimations of infinite series which in a certain sense restrict their usefulness from the computational point of view. Thus the question arises whether the Szász-Mirakyan operators and their generalizations cannot be replaced by a finite sum. In connection with this question we propose a new family of linear positive operators.
References:
[1] Atakut, C., Ispir, N.: The order of approximation by certain linear positive operators. Math. Balk., New Ser. 15 (2001), 25-33. MR 1882520 | Zbl 1040.41007
[2] Becker, M.: Global approximation theorems for Szasz-Mirakjan and Baskakov operators in polynomial weight spaces. Indiana Univ. Math. J. 27 (1978), 127-142. DOI 10.1512/iumj.1978.27.27011 | MR 0493079 | Zbl 0358.41006
[3] Becker, M., Kucharski, D., Nessel, R. J.: Global Approximation theorems for the Szasz-Mirakjan operators in exponential weight spaces. Linear Spaces and Approximation (Proc. Conf. Oberwolfach, 1977). ISNM, Int. Ser. Numer. Math. 40 (1978), 319-333. MR 0499919
[4] Ciupa, A.: On the approximation by Favard-Szasz type operators. Rev. Anal. Numér. Théor. Approx. 25 (1996), 57-61. MR 1607327 | Zbl 0908.41010
[5] Ciupa, A.: Approximation by a generalized Szasz type operators. J. Comput. Anal. Appl. 5 (2003), 413-424. MR 2000071
[6] Vore, R. A. De, Lorentz, G. G.: Constructive Approximation. Springer Berlin (1993). MR 1261635
[7] Feng, G.: Weighted approximation on Szasz-type operators. Anal. Theory Appl. 19 (2003), 47-54. DOI 10.1007/BF02835477 | MR 1996352 | Zbl 1108.41301
[8] Feng, G.: A characterization of pointwise approximation for linear combinations of Szász-type operators. Chinese Quart. J. Math. 19 (2004), 379-384. MR 2131301
[9] Gupta, P., Gupta, V.: Rate of convergence on Baskakov-Szasz type operators. Fasc. Math. 31 (2001), 37-44. MR 1860546
[10] Gupta, V.: Error estimation for mixed summation integral type operators. J. Math. Anal. Appl. 313 (2006), 632-641. DOI 10.1016/j.jmaa.2005.05.017 | MR 2183324 | Zbl 1092.41009
[11] Gupta, V., Maheshwari, P.: On Baskakov-Szasz type operators. Kyungpook Math. J. 43 (2003), 315-325. MR 2003476 | Zbl 1145.41307
[12] Gupta, V., Pant, R. P.: Rate of convergence for the modified Szasz-Mirakyan operators on functions of bounded variation. J. Math. Anal. Appl. 233 (1999), 476-483. DOI 10.1006/jmaa.1999.6289 | MR 1689649 | Zbl 0931.41012
[13] Gupta, V., Vasishtha, V., Gupta, M. K.: Rate of convergence of the Szasz-Kantorovitch-Bezier operators for bounded variation functions. Publ. Inst. Math., Nouv. Sér. 72 (2002), 137-143. DOI 10.2298/PIM0272137G | MR 1997619 | Zbl 1052.41005
[14] Guo, S.: On the rate of convergence of the integrated Meyer-König and Zeller operators for functions of bounded variation. J. Approximation Theory 56 (1989), 245-255. DOI 10.1016/0021-9045(89)90114-7 | MR 0990339 | Zbl 0677.41023
[15] Guo, S., Li, C., Sun, Y., Yand, G., Yue, S.: Pointwise estimate for Szasz-type operators. J. Approximation Theory 94 (1998), 160-171. DOI 10.1006/jath.1998.3200 | MR 1637831
[16] Herzog, M.: Approximation theorems for modified Szasz-Mirakjan operators in polynomial weight spaces. Matematiche 54 (1999), 77-90. MR 1776330 | Zbl 0960.41015
[17] Ispir, N.: Weighted approximation by modified Favard-Szász operators. Int. Math. J. 3 (2003),1053-1060. MR 2005685
[18] Ispir, N., Atakut, C.: Approximation by modified Szasz-Mirakyan operators on weighted spaces. Proc. Indian Acad. Sci., Math. Sci. 112 (2002), 571-578. DOI 10.1007/BF02829690 | MR 1941893
[19] Lehnhoff, H. G.: On a modified Szasz-Mirakjan operator. J. Approximation Theory 42 (1984), 278-282. DOI 10.1016/0021-9045(84)90045-5 | MR 0765443 | Zbl 0573.41034
[20] Lesniewicz, M., Rempulska, L.: Approximation by some operators of the Szasz-Mirakjan type in exponential weight spaces. Glas. Mat., III. Ser. 32 (1997), 57-69. MR 1469620 | Zbl 0880.41017
[21] Li, S.: Local smoothness of functions and Baskakov-Durrmeyer operators. J. Approximation Theory 88 (1997), 139-153. DOI 10.1006/jath.1996.3016 | MR 1429969 | Zbl 0872.41008
[22] Linsen, X., Xiaoping, Z.: Pointwise characterization for combinations of Baskakov operators. Approximation Theory Appl. 18 (2002), 76-89. MR 1928167
[23] Rempulska, L., Walczak, Z.: On modified Baskakov operators. Proc. A. Razmadze Math. Inst. 133( (2003), 109-117. MR 2034442 | Zbl 1042.41020
[24] Rempulska, L., Walczak, Z.: Approximation by some operators of Szasz-Mirakyan type. Anal. Theory Appl. 20 (2004), 1-15. DOI 10.1007/BF02835254 | MR 2574579 | Zbl 1073.41021
[25] Rempulska, L., Walczak, Z.: Modified Szasz-Mirakyan operators. Math. Balk., New Ser. 18 (2004), 53-63. MR 2076077 | Zbl 1079.41022
[26] Sahai, A., Prasard, G.: On simultaneous approximation by modified Lupas operators. J. Approximation Theory 45 (1985), 122-128. DOI 10.1016/0021-9045(85)90039-5 | MR 0813006
[27] Totik, V.: Uniform approximation by Szász-Mirakjan type operators. Acta Math. 41 (1983), 291-307. MR 0703742 | Zbl 0513.41013
[28] Walczak, Z.: On certain linear positive operators in exponential weighted spaces. Math. J. Toyama Univ. 25 (2002), 109-118. MR 1963731 | Zbl 1111.41017
[29] Walczak, Z.: On certain positive linear operators in weighted polynomial spaces. Acta Math. 101 (2003), 179-191. MR 2018629
[30] Walczak, Z.: Approximation properties of certain linear positive operators in exponential weighted spaces. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 42 (2003), 123-130. MR 2056027 | Zbl 1054.41015
[31] Walczak, Z.: Approximation by some linear positive operators of functions of two variables. Saitama Math. J. 21 (2003), 23-31. MR 2068761 | Zbl 1071.41023
[32] Walczak, Z.: On the rate of convergence for modified Baskakov operators. Liet. matem. rink 44 (2004), 124-130. MR 2116497 | Zbl 1058.41007
[33] Walczak, Z.: Approximation by some linear positive operators in polynomial weighted spaces. Publ. Math. Debrecen 64 (2004), 353-367. MR 2058908 | Zbl 1079.41023
[34] Walczak, Z.: Approximation properties of certain linear positive operators in polynomial weighted spaces of functions of one and two variables. Publ. Elektrotehn. Fak. Univ. Beograd 15 (2004), 52-65. MR 2104230 | Zbl 1106.41020
[35] Walczak, Z.: On the convergence of the modified Szasz-Mirakyan operators. Yokohama Math. J. 51 (2004), 11-18. MR 2095839 | Zbl 1063.41018
[36] Walczak, Z.: On the rate of convergence for some linear operators. Hiroshima Math. J. 35 (2005), 115-124. MR 2131378 | Zbl 1079.41024
[37] Wood, B.: Uniform approximation with positive linear operators generated by binomial expansions. J. Approximation Theory 56 (1989), 48-58. DOI 10.1016/0021-9045(89)90132-9 | MR 0977873 | Zbl 0677.41024
[38] Xiehua, S.: On the convergence of the modified Szasz-Mirakjan operator. Approximation Theory Appl. 10 (1994), 20-25. MR 1287450
Partner of
EuDML logo