Previous |  Up |  Next

Article

Title: On the determination of the potential function from given orbits (English)
Author: Alboul, L.
Author: Mencía, J.
Author: Ramírez, R.
Author: Sadovskaia, N.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 3
Year: 2008
Pages: 799-821
Summary lang: English
.
Category: math
.
Summary: The paper deals with the problem of finding the field of force that generates a given ($N-1$)-parametric family of orbits for a mechanical system with $N$ degrees of freedom. This problem is usually referred to as the inverse problem of dynamics. We study this problem in relation to the problems of celestial mechanics. We state and solve a generalization of the Dainelli and Joukovski problem and propose a new approach to solve the inverse Suslov's problem. We apply the obtained results to generalize the theorem enunciated by Joukovski in 1890, solve the inverse Stäckel problem and solve the problem of constructing the potential-energy function $U$ that is capable of generating a bi-parametric family of orbits for a particle in space. We determine the equations for the sought-for function $U$ and show that on the basis of these equations we can define a system of two linear partial differential equations with respect to $U$ which contains as a particular case the Szebehely equation. We solve completely a special case of the inverse dynamics problem of constructing $U$ that generates a given family of conics known as Bertrand's problem. At the end we establish the relation between Bertrand's problem and the solutions to the Heun differential equation. We illustrate our results by several examples. (English)
Keyword: ordinary differential equations
Keyword: mechanical system
Keyword: potential-energy function
Keyword: inverse problem of dynamics
Keyword: orbit
Keyword: Riemann metric
Keyword: Stäckel system
Keyword: Heun equation
MSC: 34A34
MSC: 70F15
MSC: 70F25
MSC: 70H03
idZBL: Zbl 1174.70003
idMR: MR2455939
.
Date available: 2010-07-20T14:09:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140422
.
Reference: [1] Arnold, V. I.: Dynamical Systems 3.Viniti Moscow (1985), Russian.
Reference: [2] Bertrand, M. I.: Sur la posibilité de déduire d'une seule de lois de Kepler le principe de l'attraction.Comtes rendues 9 (1877).
Reference: [3] Bozis, G.: The inverse problem of dynamics: basic facts.Inverse Probl. 11 (1995), 687-708 Mech. 38 (1986), 357. MR 1345999
Reference: [4] Charlier, C. L.: Celestial Mechanics (Die Mechanik Des Himmels).Nauka Moscow (1966), Russian. MR 0205672
Reference: [5] Dainelli, U.: Sul movimento per una linea qualunque.Giorn. Mat. 18 (1880), Italian.
Reference: [6] Duboshin, G. H.: Celestial Mechanics.Nauka Moscow (1968), Russian.
Reference: [7] Ermakov, V. P.: Determination of the potential function from given partial integrals.Math. Sbornik, Ser. 4 15 (1881), Russian.
Reference: [8] Galiullin, A. S.: Inverse Problems of Dynamics.Mir Publishers Moscow (1984). Zbl 0654.70021, MR 0758615
Reference: [9] Joukovski, N. E.: Construction of the potential function from a given family of trajectories.Gostexizdat (1948), 227-242 Russian.
Reference: [10] Klein, J.: Espaces variationnels et mécanique.Ann Inst. Fourier 12 (1962), 1-124. Zbl 0281.49026, MR 0215269, 10.5802/aif.120
Reference: [11] Kratzer, A., Franz, W.: Transzendente Funktionen.Geest & Portig K.-G. Leipzig (1960). Zbl 0093.07101, MR 0124531
Reference: [12] Kozlov, V. V.: Dynamical Systems X. General Theory of vortices. Encyclopedia of Math. Sciencies 67.Spinger Berlin (2003). MR 1995646, 10.1007/978-3-662-06800-7
Reference: [13] Lie, S.: Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordung.Leipzig. Ber. Heft 1.-S (1895), 53-128.
Reference: [14] Newton, I.: Philosophiæ Naturalis Principia Mathematica.London (1687).
Reference: [15] Puel, F.: Celestial Mechanics 32.().
Reference: [16] Ramírez, R., N., N. Sadovskaia: Inverse problem in celestial mechanic.Atti. Sem. Mat. Fis. Univ. Modena LII (2004), 47-68. MR 2151083
Reference: [17] (ed.), A. Ronveaux: Heun's differential equations.Oxford University Press Oxford (1995). Zbl 0847.34006, MR 1392976
Reference: [18] Sadovskaia, N.: Inverse problem in theory of ordinary differential equations.PhD. Thesis Univ. Politécnica de Cataluña (2002), Spanish.
Reference: [19] Suslov, G. K.: Determination of the power function from given particular integrals.Kiev (1890), Russian.
Reference: [20] Szebehely, V.: Open problems on the eve of the next millenium.Celest. Mech. Dyn. Astron. 65 (1997), 205-211. MR 1461606, 10.1007/BF00048447
Reference: [21] Szebehely, V.: On the determination of the potential E. Proverbio, Proc. Int. Mtg. Rotation of the Earth, Bologna, 1974..
Reference: [22] Whittaker, E. T.: A Treatise on the Analytic Dynamics of Particles and Rigid Bodies.Cambridge University Press Cambridge (1959). MR 0992404
.

Files

Files Size Format View
CzechMathJ_58-2008-3_16.pdf 324.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo