Previous |  Up |  Next

Article

Title: On Lipschitz and d.c. surfaces of finite codimension in a Banach space (English)
Author: Zajíček, Luděk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 3
Year: 2008
Pages: 849-864
Summary lang: English
.
Category: math
.
Summary: Properties of Lipschitz and d.c. surfaces of finite codimension in a Banach space and properties of generated $\sigma $-ideals are studied. These $\sigma $-ideals naturally appear in the differentiation theory and in the abstract approximation theory. Using these properties, we improve an unpublished result of M. Heisler which gives an alternative proof of a result of D. Preiss on singular points of convex functions. (English)
Keyword: Banach space
Keyword: Lipschitz surface
Keyword: d.c. surface
Keyword: multiplicity points of monotone operators
Keyword: singular points of convex functions
Keyword: Aronszajn null sets
MSC: 46T05
MSC: 47H05
MSC: 58C20
idZBL: Zbl 1174.46040
idMR: MR2455942
.
Date available: 2010-07-20T14:13:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140425
.
Reference: [1] Berkson, B.: Some metrics on the subspaces of a Banach space.Pacific J. Math. 13 (1963), 7-22. MR 0152869, 10.2140/pjm.1963.13.7
Reference: [2] Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis, Vol. 1.Colloqium publications (American Mathematical Society); v. 48, Providence, Rhode Island (2000). MR 1727673
Reference: [3] Duda, J.: On inverses of $\delta$-convex mappings.Comment. Math. Univ. Carolin. 42 (2001), 281-297. Zbl 1053.47522, MR 1832147
Reference: [4] Erdös, P.: On the Hausdorff dimension of some sets in Euclidean space.Bull. Amer. Math. Soc. 52 (1946), 107-109. MR 0015144, 10.1090/S0002-9904-1946-08514-6
Reference: [5] Gohberg, I. C., Krein, M. G.: Fundamental aspects of defect numbers, root numbers, and indexes of linear operators.Uspekhi Mat. Nauk 12 (1957), 43-118 Russian. MR 0096978
Reference: [6] Hartman, P.: On functions representable as a difference of convex functions.Pacific J. Math. 9 (1959), 707-713. Zbl 0093.06401, MR 0110773, 10.2140/pjm.1959.9.707
Reference: [7] Heisler, M.: Some aspects of differentiability in geometry on Banach spaces.Ph.D. thesis, Charles University, Prague (1996).
Reference: [8] Kato, T.: Perturbation Theory for Linear Operators.Springer-Verlag, Berin (1976). Zbl 0342.47009, MR 0407617
Reference: [9] Kopecká, E., Malý, J.: Remarks on delta-convex functions.Comment. Math. Univ. Carolin. 31 (1990), 501-510. MR 1078484
Reference: [10] Largillier, A.: A note on the gap convergence.Appl. Math. Lett. 7 (1994), 67-71. Zbl 0804.46026, MR 1350148, 10.1016/0893-9659(94)90033-7
Reference: [11] Lindenstrauss, J., Preiss, D.: Fréchet differentiability of Lipschitz functions (a survey).In: Recent Progress in Functional Analysis, 19-42, North-Holland Math. Stud. 189, North-Holland, Amsterdam (2001). Zbl 1037.46043, MR 1861745
Reference: [12] Lindenstrauss, J., Preiss, D.: On Fréchet differentiability of Lipschitz maps between Banach spaces.Annals Math. 157 (2003), 257-288. Zbl 1171.46313, MR 1954267, 10.4007/annals.2003.157.257
Reference: [13] Preiss, D.: Almost differentiability of convex functions in Banach spaces and determination of measures by their values on balls.Collection: Geometry of Banach spaces (Strobl, 1989), 237-244, London Math. Soc. Lecture Note Ser. 158 (1990). MR 1110199
Reference: [14] Preiss, D., Zajíček, L.: Directional derivatives of Lipschitz functions.Israel J. Math. 125 (2001), 1-27. MR 1853802, 10.1007/BF02773371
Reference: [15] Veselý, L.: On the multiplicity points of monotone operators on separable Banach spaces.Comment. Math. Univ. Carolin. 27 (1986), 551-570. MR 0873628
Reference: [16] Veselý, L., Zajíček, L.: Delta-convex mappings between Banach spaces and applications.Dissertationes Math. (Rozprawy Mat.) 289 (1989). MR 1016045
Reference: [17] Zajíček, L.: On the points of multivaluedness of metric projections in separable Banach spaces.Comment. Math. Univ. Carolin. 19 (1978), 513-523. MR 0508958
Reference: [18] Zajíček, L.: On the points of multiplicity of monotone operators.Comment. Math. Univ. Carolin. 19 (1978), 179-189. MR 0493541
Reference: [19] Zajíček, L.: On the differentiation of convex functions in finite and infinite dimensional spaces.Czech. Math. J. 29 (1979), 340-348. MR 0536060
Reference: [20] Zajíček, L.: Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space.Czech. Math. J. 33 (1983), 292-308. MR 0699027
Reference: [21] Zajíček, L.: On $\sigma$-porous sets in abstract spaces.Abstract Appl. Analysis 2005 (2005), 509-534. MR 2201041
.

Files

Files Size Format View
CzechMathJ_58-2008-3_19.pdf 308.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo