Previous |  Up |  Next

Article

Title: On some types of radical classes (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 3
Year: 2008
Pages: 833-848
Summary lang: English
.
Category: math
.
Summary: Let $\frak m$ be an infinite cardinal. We denote by $C_\frak m$ the collection of all $\frak m$-representable Boolean algebras. Further, let $C_\frak m^0$ be the collection of all generalized Boolean algebras $B$ such that for each $b\in B$, the interval $[0,b]$ of $B$ belongs to $C_\frak m$. In this paper we prove that $C_\frak m^0$ is a radical class of generalized Boolean algebras. Further, we investigate some related questions concerning lattice ordered groups and generalized $MV$-algebras. (English)
Keyword: Boolean algebra
Keyword: generalized Boolean algebra
Keyword: $\frak m$-representability
Keyword: lattice ordered group
Keyword: generalized $MV$-algebra
Keyword: radical class
MSC: 06D35
MSC: 06E05
MSC: 06F20
idZBL: Zbl 1174.06322
idMR: MR2455941
.
Date available: 2010-07-20T14:11:52Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140424
.
Reference: [1] Chang, C. C.: On the representation of $\alpha$-complete Boolean algebras.Trans. Amer. Math. Soc. 85 (1957), 208-218. Zbl 0080.25502, MR 0086792
Reference: [2] Conrad, P.: $K$-radical classes of lattice ordered groups.In: Proc. Conf. Carbondale, Lecture Notes Math 848 Springer Verlag New York (1981), 186-207. Zbl 0455.06010, MR 0613186
Reference: [3] Conrad, P., Darnel, M. R.: Subgroups and hulls of Specker lattice ordered groups.Czech. Math. J. 51 (2001), 395-413. Zbl 0978.06011, MR 1844319, 10.1023/A:1013759300701
Reference: [4] Darnel, M.: Closure operators on radicals of lattice ordered groups.Czech. Math. J. 37 (1987), 51-64. MR 0875127
Reference: [5] Dvurečenskij, A.: Pseudo $MV$-algebras are intervals in $\ell$-groups.J. Austral. Math. Soc. 72 (2002), 427-445. MR 1902211, 10.1017/S1446788700036806
Reference: [6] Georgescu, G., Iorgulescu, A.: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras.Proc. Fourth Int. Symp. Econ. Inf., Bucharest (1999), 961-968. Zbl 0985.06007, MR 1730100
Reference: [7] Georgescu, G., Iorgulescu, A.: Pseudo $MV$-algebras.Multiple Valued Logic 6 (2001), 95-135. Zbl 1014.06008, MR 1817439
Reference: [8] Jakubík, J.: Radical mappings and radical classes of lattice ordered groups.Symposia Math. 21 Academic Press New York-London (1977), 451-477. MR 0491397
Reference: [9] Jakubík, J.: Radical classes of generalized Boolean algebras.Czech. Math. J. 48 (1998), 253-268. MR 1624315, 10.1023/A:1022885303504
Reference: [10] Jakubík, J.: Radical classes of $MV$-algebras.Czech. Math. J. 49 (1999), 191-211. MR 1676805, 10.1023/A:1022428713092
Reference: [11] Jakubík, J.: Direct product decompositions of pseudo $MV$-algebras.Archivum Math. 37 (2001), 131-142. MR 1838410
Reference: [12] Jakubík, J.: Torsion classes of Specker lattice ordered groups.Czech. Math. J. 52 (2002), 469-482. MR 1923254, 10.1023/A:1021711326115
Reference: [13] Loomis, L. H.: On the representation of $\sigma$-complete Boolean algebras.Bull. Amer. Math. Soc. 53 (1947), 757-760. Zbl 0033.01103, MR 0021084, 10.1090/S0002-9904-1947-08866-2
Reference: [14] Pierce, R. S.: Representation theorems for certain Boolean algebras.Proc. Amer. Math. Soc. 10 (1959), 42-50. Zbl 0091.03102, MR 0106862, 10.1090/S0002-9939-1959-0106862-6
Reference: [15] Rachůnek, J.: A non-commutative generalization of $MV$-algebras.Czech. Math. J. 52 (2002), 255-273. MR 1905434, 10.1023/A:1021766309509
Reference: [16] Scott, D.: A new characterization of $\alpha$-representable Boolean algebras.Bull. Amer. Math. Soc. 61 (1955), 522-523.
Reference: [17] E. C. Smith, Jr.: A distributivity condition for Boolean algebras.Ann. Math. 64 (1956), 551-561. Zbl 0074.02105, MR 0086047, 10.2307/1969602
Reference: [18] Sikorski, R.: On the representation of Boolean algebras as fields of set.Fund. Math. 35 (1958), 247-258. MR 0028374, 10.4064/fm-35-1-247-258
Reference: [19] Sikorski, R.: Distributivity and representability.Fund. Math. 48 (1959), 95-103. MR 0109799, 10.4064/fm-48-1-91-103
Reference: [20] Sikorski, R.: Boolean Algebras.Second Edition Springer Verlag Berlin-Göttingen-Heidelberg-New York (1964). Zbl 0123.01303
Reference: [21] Ton, Dao Rong: Product radical classes of $\ell$-groups.Czech. Math. J. 42 (1992), 129-142. MR 1152176
.

Files

Files Size Format View
CzechMathJ_58-2008-3_18.pdf 290.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo