Previous |  Up |  Next

Article

Title: Barbilian's metrization procedure in the plane yields either Riemannian or Lagrange generalized metrics (English)
Author: Boskoff, Wladimir G.
Author: Suceavă, Bogdan D.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 1059-1068
Summary lang: English
.
Category: math
.
Summary: In the present paper we answer two questions raised by Barbilian in 1960. First, we study how far can the hypothesis of Barbilian's metrization procedure can be relaxed. Then, we prove that Barbilian's metrization procedure in the plane generates either Riemannian metrics or Lagrance generalized metrics not reducible to Finslerian or Langrangian metrics. (English)
Keyword: {Riemannian metrics, Finslerian metrics, Lagrangian metrics, Lagrange generalized metrics, Barbilian's metrization procedure, Apollonian metric}
MSC: 30C62
MSC: 51K05
MSC: 53B40
MSC: 53C60
idZBL: Zbl 1174.53015
idMR: MR2471165
.
Date available: 2010-07-21T08:09:59Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140439
.
Reference: [1] Anastasiei, M.: Certain generalizations of Finsler metrics.Contemp. Math. 196 (1996), 161-169. Zbl 0857.53016, MR 1403588, 10.1090/conm/196/02443
Reference: [2] Barbilian, D.: Einordnung von Lobayschewskys Massenbestimmung in einer gewissen allgemeinen Metrik der Jordansche Bereiche.Časopis Mathematiky a Fysiky 64 (1934-35), 182-183 \JFM 61.0601.02.
Reference: [3] Barbilian, D.: Asupra unui principiu de metrizare.Stud. Cercet. Mat. 10 (1959), 68-116.
Reference: [4] Barbilian, D.: Fundamentele metricilor abstracte ale lui Poincaré şi Carathéodory ca aplicaţie a unui principiu general de metrizare.Stud. Cercet. Mat. 10 (1959), 273-306. MR 0131208
Reference: [5] Barbilian, D.: J-metricile naturale finsleriene.Stud. Cercet. Mat. 11 (1960), 7-44. MR 0124869
Reference: [6] Barbilian, D., Radu, N.: J-metricile naturale finsleriene şi funcţia de reprezentare a lui Riemann.Stud. Cercet. Mat. 12 (1962), 21-36. MR 0144292
Reference: [7] Beardon, A. F.: The Apollonian metric of a domain in $\mathbb R^n$, in Quasiconformal mappings and analysis.Springer-Verlag (1998), 91-108. MR 1488447
Reference: [8] Boskoff, W. G.: $S$-Riemannian manifolds and Barbilian spaces.Stud. Cercet. Mat. 46 (1994), 317-325. Zbl 0817.53012, MR 1681684
Reference: [9] Boskoff, W. G.: Finslerian and induced Riemannian structures for natural Barbilian spaces.Stud. Cercet. Mat. 47 (1995), 9-16. Zbl 0835.53082, MR 1682536
Reference: [10] Boskoff, W. G.: The connection between Barbilian and Hadamard spaces.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sr. 39 (1996), 105-111. Zbl 0888.53024
Reference: [11] Boskoff, W. G.: Hyperbolic geometry and Barbilian spaces, Istituto per la Ricerca di Base.Hardronic Press (1996). MR 1386390
Reference: [12] Boskoff, W. G.: A generalized Lagrange space induced by the Barbilian distance.Stud. Cercet. Mat. 50 (1998), 125-129. Zbl 1017.53024, MR 1839634
Reference: [13] Boskoff, W. G., Horja, P.: The characterization of some spectral Barbilian spaces using the Tzitzeica construction.Stud. Cercet. Mat. 46 (1994), 503-514. Zbl 0822.51003, MR 1680832
Reference: [14] Boskoff, W. G., Suceavă, B. D.: Barbilian spaces: the history of a geometric idea.Historia Mathematica 34 (2007), 221-224. MR 2320101, 10.1016/j.hm.2006.06.001
Reference: [15] Boskoff, W. G., Suceavă, B. D.: The history of Barbilian metrization procedure and Barbilian spaces.Mem. Secţ. Ştiinţ. Acad. Română Ser. IV 28 (2005), 7-16. MR 2360445
Reference: [16] Boskoff, W. G., Ciucă, M. G., Suceavă, B. D.: Distances induced by Barbilian's metrization procedure.Houston J. Math. 33 (2007), 709-717. Zbl 1140.53011, MR 2335731
Reference: [17] Chern, S. S., Chen, W. H., Lam, K. S.: Lectures on Differential Geometry.World Scientific (1999). Zbl 0940.53001, MR 1735502
Reference: [18] Gehring, F. W., Hag, K.: The Apollonian metric and quasiconformal mappings.Contemp. Math. 256 (2000), 143-163. Zbl 0964.30024, MR 1759676, 10.1090/conm/256/04003
Reference: [19] Hästö, P. A.: The Appollonian metric: uniformity and quasiconvexity.Ann. Acad. Sci. Fennicae 28 (2003), 385-414. MR 1996444
Reference: [20] Hästö, P. A.: The Apollonian metric: limits of the approximation and bilipschitz properties.Abstr. Appl. Anal. (2003), 1141-1158. MR 2041216, 10.1155/S1085337503309042
Reference: [21] Hästö, P. A.: The Apollonian metric: quasi-isotropy and Seittenranta's metric.Comput. Methods Funct. Theory 4 (2004), 249-273. Zbl 1073.30036, MR 2147384, 10.1007/BF03321068
Reference: [22] Hästö, P. A.: The Apollonian inner metric.Comm. Anal. Geom. 12 (2004), 927-947. MR 2104081, 10.4310/CAG.2004.v12.n4.a7
Reference: [23] Hästö, P. A., Lindén, H.: Isometries of the half-Apollonian metric.Complex Var. Theory Appl. 49 (2004), 405-415. MR 2073171, 10.1080/02781070410001712702
Reference: [24] Ibragimov, Z.: On the Apollonian metric of domains in $\overline{\mathbb R}^ n$.Complex Var. Theory Appl. 48 (2003), 837-855. MR 2014392
Reference: [25] Ibragimov, Z.: Conformality of the Apollonian metric.Comput. Methods Funct. Theory 3 (2003), 397-411. Zbl 1055.30039, MR 2082025, 10.1007/BF03321045
Reference: [26] Kelly, P. J.: Barbilian geometry and the Poincaré model.Amer. Math. Monthly 61 (1954), 311-319. Zbl 0055.41002, MR 0061397, 10.2307/2307467
Reference: [27] Miron, R., Anastasiei, M., Bucătaru, I.: The Geometry of Lagrange Spaces Handbook of Finsler geometry.Kluwer Acad. Publ., Dordrecht (2003), 969-1122. MR 2066452
.

Files

Files Size Format View
CzechMathJ_58-2008-4_13.pdf 257.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo