Previous |  Up |  Next

Article

Title: Bilinear multipliers on Lorentz spaces (English)
Author: Villarroya, Francisco
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 1045-1057
Summary lang: English
.
Category: math
.
Summary: We give one sufficient and two necessary conditions for boundedness between Lebesgue or Lorentz spaces of several classes of bilinear multiplier operators closely connected with the bilinear Hilbert transform. (English)
Keyword: bilinear Hilbert transform
Keyword: bilinear multipliers
Keyword: Lorentz spaces
MSC: 42B10
MSC: 42B15
MSC: 42B35
MSC: 47H60
idZBL: Zbl 1174.42011
idMR: MR2471164
.
Date available: 2010-07-21T08:09:12Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140438
.
Reference: [1] Bennet, C., Sharpley, R.: Interpolation of operators.Pure and applied mathematics vol. 129, Academic Press, Inc., New York (1988). MR 0928802
Reference: [2] Calderón, A. P.: Cauchy integrals on Lipschitz curves and related operators.Proc. Natl. Acad. Sci. USA 74 1324-1327 (1977). MR 0466568, 10.1073/pnas.74.4.1324
Reference: [3] Fefferman, C.: Pointwise convergence of Fourier series.Ann. Math. 98 551-571 (1973). Zbl 0268.42009, MR 0340926, 10.2307/1970917
Reference: [4] Gilbert, J., Nahmod, A.: Boundedness of bilinear operators with non-smooth symbols.Math. Res. Lett. 7 (2000), 767-778. MR 1809300, 10.4310/MRL.2000.v7.n6.a9
Reference: [5] Gilbert, J., Nahmod, A.: Bilinear operators with non-smooth symbols.J. Fourier Anal. Appl. 7 (2001), 437-469. MR 1845098, 10.1007/BF02511220
Reference: [6] Grafakos, L., Li, X.: Uniform bounds for the bilinear Hilbert transform I.Annals of Mathematics 159 (2004), 889-933. MR 2113017, 10.4007/annals.2004.159.889
Reference: [7] Lacey, M.: On the bilinear Hilbert transform.Doc. Math., vol. II 647-656 (1998). Zbl 0963.42007, MR 1648113
Reference: [8] Lacey, M., Thiele, C.: $L^p$ bounds on the bilinear Hilbert transform for $2<p<\infty $.Ann. Math. 146 (1997), 693-724. Zbl 0946.44001, MR 1491450
Reference: [9] Lacey, M., Thiele, C.: On Calderón's conjecture.Ann. Math. 149 (1999), 475-496. Zbl 0934.42012, MR 1689336, 10.2307/120971
Reference: [10] Lacey, M.: The bilinear maximal function maps into $L^p$ for $2/3<p\leq 1$.Ann. Math. 151 (2000), 35-57. MR 1745019, 10.2307/121111
Reference: [11] Larsen, R.: An introduction to the theory of multipliers, vol. 175.Springer-Verlag (1971). MR 0435738
Reference: [12] Muscalu, C., Tao, T., Thiele, C.: Multilinear operators given by singular multipliers.J. Amer. Math. Soc. 15 (2002), 469-496. MR 1887641, 10.1090/S0894-0347-01-00379-4
Reference: [13] Muscalu, C., Tao, T., Thiele, C.: Uniform estimates on multi-linear operators with modulation symmetry.J. Anal. Math. 88 255-309 (2002). Zbl 1041.42013, MR 1979774, 10.1007/BF02786579
Reference: [14] Thiele, C.: On the bilinear Hilbert transform.Universität Kiel, Habilitation (1998).
.

Files

Files Size Format View
CzechMathJ_58-2008-4_12.pdf 287.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo