Title:
|
Bilinear multipliers on Lorentz spaces (English) |
Author:
|
Villarroya, Francisco |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
58 |
Issue:
|
4 |
Year:
|
2008 |
Pages:
|
1045-1057 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give one sufficient and two necessary conditions for boundedness between Lebesgue or Lorentz spaces of several classes of bilinear multiplier operators closely connected with the bilinear Hilbert transform. (English) |
Keyword:
|
bilinear Hilbert transform |
Keyword:
|
bilinear multipliers |
Keyword:
|
Lorentz spaces |
MSC:
|
42B10 |
MSC:
|
42B15 |
MSC:
|
42B35 |
MSC:
|
47H60 |
idZBL:
|
Zbl 1174.42011 |
idMR:
|
MR2471164 |
. |
Date available:
|
2010-07-21T08:09:12Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140438 |
. |
Reference:
|
[1] Bennet, C., Sharpley, R.: Interpolation of operators.Pure and applied mathematics vol. 129, Academic Press, Inc., New York (1988). MR 0928802 |
Reference:
|
[2] Calderón, A. P.: Cauchy integrals on Lipschitz curves and related operators.Proc. Natl. Acad. Sci. USA 74 1324-1327 (1977). MR 0466568, 10.1073/pnas.74.4.1324 |
Reference:
|
[3] Fefferman, C.: Pointwise convergence of Fourier series.Ann. Math. 98 551-571 (1973). Zbl 0268.42009, MR 0340926, 10.2307/1970917 |
Reference:
|
[4] Gilbert, J., Nahmod, A.: Boundedness of bilinear operators with non-smooth symbols.Math. Res. Lett. 7 (2000), 767-778. MR 1809300, 10.4310/MRL.2000.v7.n6.a9 |
Reference:
|
[5] Gilbert, J., Nahmod, A.: Bilinear operators with non-smooth symbols.J. Fourier Anal. Appl. 7 (2001), 437-469. MR 1845098, 10.1007/BF02511220 |
Reference:
|
[6] Grafakos, L., Li, X.: Uniform bounds for the bilinear Hilbert transform I.Annals of Mathematics 159 (2004), 889-933. MR 2113017, 10.4007/annals.2004.159.889 |
Reference:
|
[7] Lacey, M.: On the bilinear Hilbert transform.Doc. Math., vol. II 647-656 (1998). Zbl 0963.42007, MR 1648113 |
Reference:
|
[8] Lacey, M., Thiele, C.: $L^p$ bounds on the bilinear Hilbert transform for $2<p<\infty $.Ann. Math. 146 (1997), 693-724. Zbl 0946.44001, MR 1491450 |
Reference:
|
[9] Lacey, M., Thiele, C.: On Calderón's conjecture.Ann. Math. 149 (1999), 475-496. Zbl 0934.42012, MR 1689336, 10.2307/120971 |
Reference:
|
[10] Lacey, M.: The bilinear maximal function maps into $L^p$ for $2/3<p\leq 1$.Ann. Math. 151 (2000), 35-57. MR 1745019, 10.2307/121111 |
Reference:
|
[11] Larsen, R.: An introduction to the theory of multipliers, vol. 175.Springer-Verlag (1971). MR 0435738 |
Reference:
|
[12] Muscalu, C., Tao, T., Thiele, C.: Multilinear operators given by singular multipliers.J. Amer. Math. Soc. 15 (2002), 469-496. MR 1887641, 10.1090/S0894-0347-01-00379-4 |
Reference:
|
[13] Muscalu, C., Tao, T., Thiele, C.: Uniform estimates on multi-linear operators with modulation symmetry.J. Anal. Math. 88 255-309 (2002). Zbl 1041.42013, MR 1979774, 10.1007/BF02786579 |
Reference:
|
[14] Thiele, C.: On the bilinear Hilbert transform.Universität Kiel, Habilitation (1998). |
. |