Previous |  Up |  Next

Article

Keywords:
$h$-basis; extremal $h$-basis; geometric progression
Summary:
Let $h,k$ be fixed positive integers, and let $A$ be any set of positive integers. Let $hA:=\{a_1+a_2+\cdots +a_r\colon a_i \in A, r \le h\}$ denote the set of all integers representable as a sum of no more than $h$ elements of $A$, and let $n(h,A)$ denote the largest integer $n$ such that $\{1,2,\ldots ,n\} \subseteq hA$. Let $n(h,k):=\max _A\colon n(h,A)$, where the maximum is taken over all sets $A$ with $k$ elements. We determine $n(h,A)$ when the elements of $A$ are in geometric progression. In particular, this results in the evaluation of $n(h,2)$ and yields surprisingly sharp lower bounds for $n(h,k)$, particularly for $k=3$.
References:
[1] Alter, R., Barnett, J. A.: A postage stamp problem. Amer. Math. Monthly 87 206-210 (1980). DOI 10.2307/2321610 | MR 1539314 | Zbl 0432.10032
[2] Hofmeister, G.: Asymptotische Abschätzungen für dreielementige Extremalbasen in natürlichen Zahlen. J. reine angew. Math. 232 77-101 (1968). MR 0232745 | Zbl 0165.06201
[3] Rohrbach, H.: Ein Beitrag zur additiven Zahlentheorie. Math. Z. 42 1-30 (1937). DOI 10.1007/BF01160061 | MR 1545658
[4] Stanton, R. G., Bate, J. A., Mullin, R. C.: Some tables for the postage stamp problem. Congr. Numer., Proceedings of the Fourth Manitoba Conference on Numerical Mathematics, Winnipeg 12 351-356 (1974). MR 0371669
[5] Stöhr, A.: Gelöste and ungelöste Fragen über Basen der natürlichen Zahlenreihe, I. J. reine Angew. Math. 194 40-65 (1955). MR 0075228
[6] Stöhr, A.: Gelöste and ungelöste Fragen über Basen der natürlichen Zahlenreihe, II. J. reine Angew. Math. 194 111-140 (1955). MR 0075228
Partner of
EuDML logo