Previous |  Up |  Next

Article

Title: The postage stamp problem and arithmetic in base $r$ (English)
Author: Tripathi, Amitabha
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 1097-1100
Summary lang: English
.
Category: math
.
Summary: Let $h,k$ be fixed positive integers, and let $A$ be any set of positive integers. Let $hA:=\{a_1+a_2+\cdots +a_r\colon a_i \in A, r \le h\}$ denote the set of all integers representable as a sum of no more than $h$ elements of $A$, and let $n(h,A)$ denote the largest integer $n$ such that $\{1,2,\ldots ,n\} \subseteq hA$. Let $n(h,k):=\max _A\colon n(h,A)$, where the maximum is taken over all sets $A$ with $k$ elements. We determine $n(h,A)$ when the elements of $A$ are in geometric progression. In particular, this results in the evaluation of $n(h,2)$ and yields surprisingly sharp lower bounds for $n(h,k)$, particularly for $k=3$. (English)
Keyword: $h$-basis
Keyword: extremal $h$-basis
Keyword: geometric progression
MSC: 11B13
MSC: 11D04
idZBL: Zbl 1174.11013
idMR: MR2471168
.
Date available: 2010-07-21T08:11:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140442
.
Reference: [1] Alter, R., Barnett, J. A.: A postage stamp problem.Amer. Math. Monthly 87 206-210 (1980). Zbl 0432.10032, MR 1539314, 10.2307/2321610
Reference: [2] Hofmeister, G.: Asymptotische Abschätzungen für dreielementige Extremalbasen in natürlichen Zahlen.J. reine angew. Math. 232 77-101 (1968). Zbl 0165.06201, MR 0232745
Reference: [3] Rohrbach, H.: Ein Beitrag zur additiven Zahlentheorie.Math. Z. 42 1-30 (1937). MR 1545658, 10.1007/BF01160061
Reference: [4] Stanton, R. G., Bate, J. A., Mullin, R. C.: Some tables for the postage stamp problem.Congr. Numer., Proceedings of the Fourth Manitoba Conference on Numerical Mathematics, Winnipeg 12 351-356 (1974). MR 0371669
Reference: [5] Stöhr, A.: Gelöste and ungelöste Fragen über Basen der natürlichen Zahlenreihe, I.J. reine Angew. Math. 194 40-65 (1955). MR 0075228
Reference: [6] Stöhr, A.: Gelöste and ungelöste Fragen über Basen der natürlichen Zahlenreihe, II.J. reine Angew. Math. 194 111-140 (1955). MR 0075228
.

Files

Files Size Format View
CzechMathJ_58-2008-4_16.pdf 206.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo