Previous |  Up |  Next

Article

Title: Direct product decompositions of bounded commutative residuated $\ell$-monoids (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 1129-1143
Summary lang: English
.
Category: math
.
Summary: The notion of bounded commutative residuated $\ell $-monoid ($BCR$ $\ell $-monoid, in short) generalizes both the notions of $MV$-algebra and of $BL$-algebra. Let $\c A$ be a $BCR$ $\ell $-monoid; we denote by $\ell (\c A)$ the underlying lattice of $\c A$. In the present paper we show that each direct product decomposition of $\ell (\c A)$ determines a direct product decomposition of $\c A$. This yields that any two direct product decompositions of $\c A$ have isomorphic refinements. We consider also the relations between direct product decompositions of $\c A$ and states on $\c A$. (English)
Keyword: bounded commutative residuated $\ell$-monoid
Keyword: lattice
Keyword: direct product decomposition
Keyword: internal direct factor
MSC: 03G25
MSC: 06D35
MSC: 06F05
idZBL: Zbl 1174.06327
idMR: MR2471171
.
Date available: 2010-07-21T08:12:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140445
.
Reference: [1] Birkhoff, G.: Lattice Theory.Third Edition Providence (1967). Zbl 0153.02501, MR 0227053
Reference: [2] Cignoli, R., D'Ottaviano, M. I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, Studia Logica Library Vol. 7.Kluwer Academic Publishers Dordrecht (2000). MR 1786097
Reference: [3] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded commutative residuated $\ell$-monoids.Discrete Math. 306 (2006), 1317-1326. MR 2237716, 10.1016/j.disc.2005.12.024
Reference: [4] Dvurečenskij, A., Rachůnek, J.: Bounded commutative residuated $\ell$-monoids with general comparability.Soft Comput. 10 (2006), 212-218. 10.1007/s00500-005-0473-0
Reference: [5] Hájek, P.: Metamathematics of Fuzzy Logic.Kluwer Academic Publishers Dordrecht (1998). MR 1900263
Reference: [6] Hashimoto, J.: On the product decompositions of partially ordered sets.Math. Japonicae 1 (1948), 120-123. MR 0030502
Reference: [7] Jakubík, J.: Direct product decompositions of $MV$-algebras.Czech. Math. J. 44 (1994), 725-739.
Reference: [8] Jakubík, J.: Direct product decompositions of pseudo $MV$-algebras.Archivum Math. 37 (2001), 131-142. MR 1838410
Reference: [9] Jakubík, J.: Direct product decompositions of pseudo effect algebras.Math. Slovaca 55 (2005), 379-398. MR 2181779
Reference: [10] Jakubík, J., Csontóová, M.: Cancellation rule for internal direct product decompositions of a connected partially ordered set.Math. Bohenica 125 (2000), 115-122. MR 1752083
Reference: [11] Kurosh, A. G.: Group Theory.Third Edition Moskva (1967), Russian. Zbl 0189.30801
Reference: [12] Rachůnek, J., Šalounová, D.: Direct decompositions of dually residuated lattice ordered monoids.Discuss. Math. Gen. Algebra Appl. 24 (2004), 63-74. MR 2118156, 10.7151/dmgaa.1076
Reference: [13] Swamy, K. L. M.: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105-114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284
.

Files

Files Size Format View
CzechMathJ_58-2008-4_19.pdf 267.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo