Title:
|
Direct product decompositions of bounded commutative residuated $\ell$-monoids (English) |
Author:
|
Jakubík, Ján |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
58 |
Issue:
|
4 |
Year:
|
2008 |
Pages:
|
1129-1143 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The notion of bounded commutative residuated $\ell $-monoid ($BCR$ $\ell $-monoid, in short) generalizes both the notions of $MV$-algebra and of $BL$-algebra. Let $\c A$ be a $BCR$ $\ell $-monoid; we denote by $\ell (\c A)$ the underlying lattice of $\c A$. In the present paper we show that each direct product decomposition of $\ell (\c A)$ determines a direct product decomposition of $\c A$. This yields that any two direct product decompositions of $\c A$ have isomorphic refinements. We consider also the relations between direct product decompositions of $\c A$ and states on $\c A$. (English) |
Keyword:
|
bounded commutative residuated $\ell$-monoid |
Keyword:
|
lattice |
Keyword:
|
direct product decomposition |
Keyword:
|
internal direct factor |
MSC:
|
03G25 |
MSC:
|
06D35 |
MSC:
|
06F05 |
idZBL:
|
Zbl 1174.06327 |
idMR:
|
MR2471171 |
. |
Date available:
|
2010-07-21T08:12:54Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140445 |
. |
Reference:
|
[1] Birkhoff, G.: Lattice Theory.Third Edition Providence (1967). Zbl 0153.02501, MR 0227053 |
Reference:
|
[2] Cignoli, R., D'Ottaviano, M. I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, Studia Logica Library Vol. 7.Kluwer Academic Publishers Dordrecht (2000). MR 1786097 |
Reference:
|
[3] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded commutative residuated $\ell$-monoids.Discrete Math. 306 (2006), 1317-1326. MR 2237716, 10.1016/j.disc.2005.12.024 |
Reference:
|
[4] Dvurečenskij, A., Rachůnek, J.: Bounded commutative residuated $\ell$-monoids with general comparability.Soft Comput. 10 (2006), 212-218. 10.1007/s00500-005-0473-0 |
Reference:
|
[5] Hájek, P.: Metamathematics of Fuzzy Logic.Kluwer Academic Publishers Dordrecht (1998). MR 1900263 |
Reference:
|
[6] Hashimoto, J.: On the product decompositions of partially ordered sets.Math. Japonicae 1 (1948), 120-123. MR 0030502 |
Reference:
|
[7] Jakubík, J.: Direct product decompositions of $MV$-algebras.Czech. Math. J. 44 (1994), 725-739. |
Reference:
|
[8] Jakubík, J.: Direct product decompositions of pseudo $MV$-algebras.Archivum Math. 37 (2001), 131-142. MR 1838410 |
Reference:
|
[9] Jakubík, J.: Direct product decompositions of pseudo effect algebras.Math. Slovaca 55 (2005), 379-398. MR 2181779 |
Reference:
|
[10] Jakubík, J., Csontóová, M.: Cancellation rule for internal direct product decompositions of a connected partially ordered set.Math. Bohenica 125 (2000), 115-122. MR 1752083 |
Reference:
|
[11] Kurosh, A. G.: Group Theory.Third Edition Moskva (1967), Russian. Zbl 0189.30801 |
Reference:
|
[12] Rachůnek, J., Šalounová, D.: Direct decompositions of dually residuated lattice ordered monoids.Discuss. Math. Gen. Algebra Appl. 24 (2004), 63-74. MR 2118156, 10.7151/dmgaa.1076 |
Reference:
|
[13] Swamy, K. L. M.: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105-114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284 |
. |