Previous |  Up |  Next

Article

Title: Noncirculant Toeplitz matrices all of whose powers are Toeplitz (English)
Author: Griffin, Kent
Author: Stuart, Jeffrey L.
Author: Tsatsomeros, Michael J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 1185-1193
Summary lang: English
.
Category: math
.
Summary: Let $a$, $b$ and $c$ be fixed complex numbers. Let $M_n(a,b,c)$ be the $n\times n$ Toeplitz matrix all of whose entries above the diagonal are $a$, all of whose entries below the diagonal are $b$, and all of whose entries on the diagonal are $c$. For $1\leq k\leq n$, each $k\times k$ principal minor of $M_n(a,b,c)$ has the same value. We find explicit and recursive formulae for the principal minors and the characteristic polynomial of $M_n(a,b,c)$. We also show that all complex polynomials in $M_n(a,b,c)$ are Toeplitz matrices. In particular, the inverse of $M_n(a,b,c)$ is a Toeplitz matrix when it exists. (English)
Keyword: Toeplitz matrix
Keyword: Toeplitz inverse
Keyword: Toeplitz powers
Keyword: principal minor
Keyword: Fibonacci sequence
MSC: 11B37
MSC: 11B39
MSC: 15A15
MSC: 15A57
idZBL: Zbl 1174.15011
idMR: MR2471175
.
Date available: 2010-07-21T08:14:38Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140449
.
Reference: [1] Griffin, K.: Solving the principal minor assignment problem and related computations.PhD. Dissertation Washington State University Washington (2006). MR 2709319
Reference: [2] Griffin, K., Tsatsomeros, M. J.: Principal minors, Part I: A method for computing all the principal minors of a matrix.Linear Algebra Appl. 419 (2006), 107-124. MR 2263114
Reference: [3] Griffin, K., Tsatsomeros, M. J.: Principal minors, Part II: The principal minor assignment problem.Linear Algebra Appl. 419 (2006), 125-171. MR 2263115
Reference: [4] Huang, N. M., Cline, R. E.: Inversion of persymmetric matrices having Toeplitz inverses.J. Assoc. Comput. Mach. 19 (1972), 437-444. Zbl 0259.65032, MR 0312704, 10.1145/321707.321714
Reference: [5] Shalom, T.: On algebras of Toeplitz matrices.Linear Algebra Appl. 96 (1987), 211-226. Zbl 0644.15005, MR 0910995, 10.1016/0024-3795(87)90345-4
.

Files

Files Size Format View
CzechMathJ_58-2008-4_23.pdf 241.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo