Previous |  Up |  Next

Article

Title: The sharpness of convergence results for $q$-Bernstein polynomials in the case $q>1$ (English)
Author: Ostrovska, Sofiya
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 1195-1206
Summary lang: English
.
Category: math
.
Summary: Due to the fact that in the case $q>1$ the $q$-Bernstein polynomials are no longer positive linear operators on $C[0,1],$ the study of their convergence properties turns out to be essentially more difficult than that for $q<1.$ In this paper, new saturation theorems related to the convergence of $q$-Bernstein polynomials in the case $q>1$ are proved. (English)
Keyword: $q$-integers
Keyword: $q$-binomial coefficients
Keyword: $q$-Bernstein polynomials
Keyword: uniform convergence
Keyword: analytic function
Keyword: Cauchy estimates
MSC: 30E10
MSC: 33D45
MSC: 41A10
idZBL: Zbl 1174.41010
idMR: MR2471176
.
Date available: 2010-07-21T08:15:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140450
.
Reference: [1] Cao, J.-D.: A generalization of the Bernstein polynomials.J. Math. Anal. Appl. 209 (1997), 140-146. Zbl 0879.41010, MR 1444517, 10.1006/jmaa.1997.5349
Reference: [2] Cao, J.-D., Gonska, H., Kacsó, D.: On the impossibility of certain lower estimates for sequences of linear operators.Math. Balkanica 19 (2005), 39-58. MR 2119784
Reference: [3] Cheney, E. W., Sharma, A.: On a generalization of Bernstein polynomials.Riv. Mat. Univ. Parma 5 (1964), 77-84. Zbl 0146.08202, MR 0198074
Reference: [4] Cooper, S., Waldron, S.: The eigenstructure of the Bernstein operator.J. Approx. Theory 105 (2000), 133-165. Zbl 0963.41006, MR 1768528, 10.1006/jath.2000.3464
Reference: [5] Derriennic, M.-M.: Modified Bernstein polynomials and Jacobi polynomials in $q$-calculus.Rendiconti Del Circolo Matematico Di Palermo, Serie II, Suppl. 76 (2005), 269-290. Zbl 1142.41002, MR 2178441
Reference: [6] Gonska, H.: The rate of convergence of bounded linear processes on spaces of continuous functions.Automat. Comput. Appl. Math. 7 (1999), 38-97. MR 1886377
Reference: [7] Gupta, V.: Some approximation properties of $q$-Durrmeyer operators.Appl. Math. Comput. 197 (2008), 172-178. Zbl 1142.41008, MR 2396302, 10.1016/j.amc.2007.07.056
Reference: [8] Gupta, V., Wang, H.: The rate of convergence of $q$-Durrmeyer operators for $0<q<1$.Math. Meth. Appl. Sci. (2008). MR 2447215
Reference: [9] Habib, A., Umar, S.: On generalized Bernstein polynomials.Indian J. Pure Appl. Math. 11 (1980), 177-189. Zbl 0443.41015, MR 0571065
Reference: [10] Il'inskii, A., Ostrovska, S.: Convergence of generalized Bernstein polynomials.J. Approx. Theory 116 (2002), 100-112. Zbl 0999.41007, MR 1909014, 10.1006/jath.2001.3657
Reference: [11] Lorentz, G. G.: Bernstein Polynomials.Chelsea, New York (1986). Zbl 0989.41504, MR 0864976
Reference: [12] Lupaş, A.: A $q$-analogue of the Bernstein operator.University of Cluj-Napoca, Seminar on numerical and statistical calculus, No. 9 (1987).
Reference: [13] Novikov, I. Ya.: Asymptotics of the roots of Bernstein polynomials used in the construction of modified Daubechies wavelets.Mathematical Notes 71 (2002), 217-229. Zbl 1034.42040, MR 1900797, 10.1023/A:1013959231555
Reference: [14] Ostrovska, S.: $q$-Bernstein polynomials and their iterates.J. Approx. Theory 123 (2003), 232-255. Zbl 1093.41013, MR 1990098, 10.1016/S0021-9045(03)00104-7
Reference: [15] Ostrovska, S.: On the $q$-Bernstein polynomials.Advanced Studies in Contemporary Mathematics 11 (2005), 193-204. Zbl 1116.41013, MR 2169894
Reference: [16] Ostrovska, S.: On the improvement of analytic properties under the limit $q$-Bernstein operator.J. Approx. Theory 138 (2006), 37-53. Zbl 1098.41006, MR 2197601, 10.1016/j.jat.2005.09.015
Reference: [17] Petrone, S.: Random Bernstein polynomials.Scan. J. Statist. 26 (1999), 373-393. Zbl 0939.62046, MR 1712051, 10.1111/1467-9469.00155
Reference: [18] Videnskii, V. S.: On some classes of $q$-parametric positive operators.Operator Theory, Advances and Applications, Vol. 158 (2005), 213-222. MR 2147598, 10.1007/3-7643-7340-7_15
Reference: [19] Videnskii, V. S.: On the polynomials with respect to the generalized Bernstein basis.In: Problems of modern mathematics and mathematical education, Hertzen readings. St.-Petersburg (2005), 130-134 Russian.
Reference: [20] Wang, H.: Korovkin-type theorem and application.J. Approx. Theory 132 (2005), 258-264. Zbl 1118.41015, MR 2118520, 10.1016/j.jat.2004.12.010
Reference: [21] Wang, H.: Voronovskaya type formulas and saturation of convergence for $q$-Bernstein polynomials for $0<q<1$.J. Approx. Theory 145 (2007), 182-195. Zbl 1112.41016, MR 2312464, 10.1016/j.jat.2006.08.005
Reference: [22] Wang, H., Wu, X. Z.: Saturation of convergence for $q$-Bernstein polynomials in the case $q\geq 1$.J. Math. Anal.Appl. 337 (2008), 744-750. MR 2356108, 10.1016/j.jmaa.2007.04.014
Reference: [23] Wang, H.: Properties of convergence for $\omega,q$-Bernstein polynomials.J. Math. Anal. Appl. 340 (2008), 1096-1108. Zbl 1144.41004, MR 2390913, 10.1016/j.jmaa.2007.09.004
.

Files

Files Size Format View
CzechMathJ_58-2008-4_24.pdf 260.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo