Title:
|
The $\bar\partial$-Neumann operator and commutators of the Bergman projection and multiplication operators (English) |
Author:
|
Haslinger, Friedrich |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
58 |
Issue:
|
4 |
Year:
|
2008 |
Pages:
|
1247-1256 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that compactness of the canonical solution operator to $\bar \partial $ restricted to $(0,1)$-forms with holomorphic coefficients is equivalent to compactness of the commutator $[\mathcal P,\bar M]$ defined on the whole $L^2_{(0,1)}(\Omega ),$ where $\bar M$ is the multiplication by $\bar z$ and $\mathcal P $ is the orthogonal projection of $L^2_{(0,1)}(\Omega )$ to the subspace of $(0,1)$ forms with holomorphic coefficients. Further we derive a formula for the $\bar \partial $-Neumann operator restricted to $(0,1)$ forms with holomorphic coefficients expressed by commutators of the Bergman projection and the multiplications operators by $z $ and $\bar z$. (English) |
Keyword:
|
$\bar{\partial}$-equation |
Keyword:
|
$\bar{\partial}$-Neumann operator |
Keyword:
|
compactness |
MSC:
|
32A36 |
MSC:
|
32W05 |
idZBL:
|
Zbl 1174.32015 |
idMR:
|
MR2471181 |
. |
Date available:
|
2010-07-21T08:18:02Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140455 |
. |
Reference:
|
[1] Boas, H. P., Straube, E. J.: Global regularity of the $\bar{\partial} $-Neumann problem: a survey of the $L^2$-Sobolev theory.Several Complex Variables (M. Schneider and Y.-T. Siu, eds.) MSRI Publications, vol. 37, Cambridge University Press (1999), 79-111. MR 1748601 |
Reference:
|
[2] Catlin, D.: Global regularity of the $\bar{\partial} $-Neumann problem.Proc. Sympos. Pure Math. 41 39-49; A.M.S. Providence, Rhode Island, 1984. Zbl 0578.32031, MR 0740870 |
Reference:
|
[3] Catlin, D., D'Angelo, J.: Positivity conditions for bihomogeneous polynomials.Math. Res. Lett. 4 (1997), 555-567. Zbl 0886.32015, MR 1470426, 10.4310/MRL.1997.v4.n4.a11 |
Reference:
|
[4] Chen, So-Chin, Shaw, Mei-Chi: Partial differential equations in several complex variables.Studies in Advanced Mathematics, Vol. 19, Amer. Math. Soc. (2001). Zbl 0963.32001, MR 1800297 |
Reference:
|
[5] D'Angelo, J.: Real hypersurfaces, orders of contact, and applications.Ann. Math. 115 (1982), 615-637. Zbl 0488.32008, MR 0657241, 10.2307/2007015 |
Reference:
|
[6] Fu, S., Straube, E. J.: Compactness of the $\bar{\partial}$-Neumann problem on convex domains.J. Funct. Anal. 159 (1998), 629-641. MR 1659575, 10.1006/jfan.1998.3317 |
Reference:
|
[7] Fu, S., Straube, E. J.: Compactness in the $\bar{\partial}$-Neumann problem.Complex Analysis and Geometry (J. McNeal, ed.), Ohio State Math. Res. Inst. Publ. 9 (2001), 141-160. Zbl 1011.32025, MR 1912737 |
Reference:
|
[8] Folland, G., Kohn, J.: The Neumann problem for the Cauchy-Riemann complex.Annals of Math. Studies 75, Princeton University Press (1972). Zbl 0247.35093, MR 0461588 |
Reference:
|
[9] Haslinger, F.: The canonical solution operator to $\bar{\partial}$ restricted to Bergman spaces.Proc. Amer. Math. Soc. 129 (2001), 3321-3329. MR 1845009, 10.1090/S0002-9939-01-05953-6 |
Reference:
|
[10] Haslinger, F.: The canonical solution operator to $\bar{\partial}$ restricted to spaces of entire functions.Ann. Fac. Sci. Toulouse Math. 11 (2002), 57-70. MR 1986383, 10.5802/afst.1018 |
Reference:
|
[11] Haslinger, F.: Magnetic Schrädinger operators and the $\bar{\partial}$-equation.J. Math. Kyoto Univ. 46 (2006), 249-257. MR 2284342, 10.1215/kjm/1250281775 |
Reference:
|
[12] Haslinger, F., Helffer, B.: Compactness of the solution operator to $\bar{\partial}$ in weighted $L^2$-spaces.J. Funct. Anal. 243 (2007), 679-697. MR 2289700, 10.1016/j.jfa.2006.09.004 |
Reference:
|
[13] Haslinger, F., Lamel, B.: Spectral properties of the canonical solution operator to $\bar{\partial}$.J. Funct. Anal. 255 (2008), 13-24. MR 2417807, 10.1016/j.jfa.2008.03.013 |
Reference:
|
[14] Henkin, G., Iordan, A.: Compactness of the $\bar{\partial}$-Neumann operator for hyperconvex domains with non-smooth B-regular boundary.Math. Ann. 307 (1997), 151-168. MR 1427681, 10.1007/s002080050028 |
Reference:
|
[15] Kohn, J.: Subellipticity of the $\bar{\partial}$-Neumann problem on pseudoconvex Domains: sufficient conditions.Acta Math. 142 (1979), 79-122. MR 0512213, 10.1007/BF02395058 |
Reference:
|
[16] Kohn, J., Nirenberg, L.: Non-coercive boundary value problems.Comm. Pure Appl. Math. 18 (1965), 443-492. Zbl 0125.33302, MR 0181815, 10.1002/cpa.3160180305 |
Reference:
|
[17] Krantz, St.: Compactness of the $\bar{\partial}$-Neumann operator.Proc. Amer. Math. Soc. 103 (1988), 1136-1138. Zbl 0736.35071, MR 0954995, 10.1090/S0002-9939-1988-0954995-2 |
Reference:
|
[18] Ligocka, E.: The regularity of the weighted Bergman projections.Seminar on deformations, Proceedings, Lodz-Warsaw, 1982/84, Lecture Notes in Math. {\it 1165}, Springer-Verlag, Berlin (1985), 197-203. Zbl 0594.35049, MR 0825756 |
Reference:
|
[19] Salinas, N., Sheu, A., Upmeier, H.: Toeplitz operators on pseudoconvex domains and foliation $C^{\ast}$-algebras.Ann. of Math. 130 (1989), 531-565. Zbl 0708.47021, MR 1025166, 10.2307/1971454 |
Reference:
|
[20] Venugopalkrishna, U.: Fredholm operators associated with strongly pseudoconvex domains in $\mathbb C^n$.J. Funct. Anal. 9 (1972), 349-373. MR 0315502, 10.1016/0022-1236(72)90007-9 |
. |