Previous |  Up |  Next

Article

Title: Unconditional ideals of finite rank operators (English)
Author: Abrahamsen, Trond A.
Author: Lima, Asvald
Author: Lima, Vegard
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 1257-1278
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a Banach space. We give characterizations of when ${\cal F}(Y,X)$ is a $u$-ideal in ${\cal W}(Y,X)$ for every Banach space $Y$ in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when ${\cal F}(X,Y)$ is a $u$-ideal in ${\cal W}(X,Y)$ for every Banach space $Y$, when ${\cal F}(Y,X)$ is a $u$-ideal in ${\cal W}(Y,X^{**})$ for every Banach space $Y$, and when ${\cal F}(Y,X)$ is a $u$-ideal in ${\cal K}(Y,X^{**})$ for every Banach space $Y$. (English)
Keyword: $u$-ideals
Keyword: finite rank
Keyword: compact
Keyword: and weakly compact operators
Keyword: Hahn-Banach extension operators
MSC: 46B04
MSC: 46B20
MSC: 46B28
MSC: 47L20
idZBL: Zbl 1174.46003
idMR: MR2471182
.
Date available: 2010-07-21T08:18:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140456
.
Reference: [1] Belobrov, P. K.: Minimal extension of linear functionals onto the second conjugate space.Mat. Zametki 27 (1980), 439-445, 494. MR 0570754
Reference: [2] Casazza, P. G., Kalton, N. J.: Notes on approximation properties in separable {Banach} spaces.Geometry of Banach Spaces, Proc. Conf. Strobl 1989, London Mathematical Society Lecture Note Series 158 (P.F.X. Müller and W. Schachermayer, eds.), Cambridge University Press (1990), 49-63. MR 1110185
Reference: [3] Davis, W. J., Figiel, T., Johnson, W. B., Pełczyński, A.: Factoring weakly compact operators.J. Functional Analysis 17 (1974), 311-327. MR 0355536, 10.1016/0022-1236(74)90044-5
Reference: [4] Feder, M., Saphar, P.: Spaces of compact operators and their dual spaces.Israel J. Math. 21 (1975), 38-49. Zbl 0325.47028, MR 0377591, 10.1007/BF02757132
Reference: [5] Godefroy, G., Kalton, N. J., Saphar, P. D.: Unconditional ideals in {Banach} spaces.Studia Math. 104 (1993), 13-59. Zbl 0814.46012, MR 1208038
Reference: [6] Godefroy, G., Saphar, P.: Duality in spaces of operators and smooth norms on {Banach} spaces.Illinois J. Math. 32 (1988), 672-695. Zbl 0631.46015, MR 0955384, 10.1215/ijm/1255988868
Reference: [7] Harmand, P., Werner, D., Werner, W.: $M$-ideals in Banach Spaces and Banach Algebras.Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin (1993). Zbl 0789.46011, MR 1238713, 10.1007/BFb0084360
Reference: [8] Johnson, J., Wolfe, J.: On the norm of the canonical projection of {$E^{***}$} onto {$E^{\perp}$}.Proc. Amer. Math. Soc. 75 (1979), 50-52. Zbl 0405.46010, MR 0529211, 10.1090/S0002-9939-1979-0529211-0
Reference: [9] Kalton, N. J.: Locally complemented subspaces and ${\cal L}_p$-spaces for $0<p<1$.Math. Nachr. 115 (1984), 71-97. MR 0755269, 10.1002/mana.19841150107
Reference: [10] Lima, V.: The weak metric approximation property and ideals of operators.J. Math. Anal. A. 334 (2007), 593-603. Zbl 1120.46011, MR 2332578, 10.1016/j.jmaa.2007.01.007
Reference: [11] Lima, V., Lima, A.: Geometry of spaces of compact operators.Arkiv für Matematik 46 (2008), 113-142. Zbl 1166.46009, MR 2379687, 10.1007/s11512-007-0060-y
Reference: [12] Lima, V., Lima, A.: Ideals of operators and the metric approximation property.J. Funct. Anal. 210 (2004), 148-170. Zbl 1068.46014, MR 2052117, 10.1016/j.jfa.2003.10.001
Reference: [13] Lima, A.: Intersection properties of balls and subspaces in {Banach} spaces.Trans. Amer. Math. Soc. 227 (1977), 1-62. Zbl 0347.46017, MR 0430747, 10.1090/S0002-9947-1977-0430747-4
Reference: [14] Lima, A.: The metric approximation property, norm-one projections and intersection properties of balls.Israel J. Math. 84 (1993), 451-475. Zbl 0814.46016, MR 1244680, 10.1007/BF02760953
Reference: [15] Lima, A.: Property {$(wM^*)$} and the unconditional metric compact approximation property.Studia Math. 113 (1995), 249-263. Zbl 0826.46013, MR 1330210, 10.4064/sm-113-3-249-263
Reference: [16] Lima, A., Nygaard, O., Oja, E.: Isometric factorization of weakly compact operators and the approximation property.Israel J. Math. 119 (2000), 325-348. Zbl 0983.46024, MR 1802659, 10.1007/BF02810673
Reference: [17] Lima, A., Oja, E.: Ideals of finite rank operators, intersection properties of balls, and the approximation property.Studia Math. 133 (1999), 175-186. Zbl 0930.46020, MR 1686696
Reference: [18] Lima, A., Oja, E.: Hahn-Banach extension operators and spaces of operators.Proc. Amer. Math. Soc. 130 (2002), 3631-3640 (electronic). Zbl 1006.46004, MR 1920043, 10.1090/S0002-9939-02-06615-7
Reference: [19] Lima, A., Oja, E.: Ideals of compact operators.J. Aust. Math. Soc. 77 (2004), 91-110. Zbl 1082.46016, MR 2069027, 10.1017/S144678870001017X
Reference: [20] Lima, A., Oja, E.: Ideals of operators, approximability in the strong operator topology, and the approximation property.Michigan Math. J. 52 (2004), 253-265. Zbl 1069.46013, MR 2069799, 10.1307/mmj/1091112074
Reference: [21] Lima, A., Oja, E.: The weak metric approximation property.Math. Ann. 333 (2005), 471-484. Zbl 1097.46012, MR 2198796, 10.1007/s00208-005-0656-0
Reference: [22] Lima, A., Oja, E., Rao, T. S. S. R. K., Werner, D.: Geometry of operator spaces.Michigan Math. J. 41 (1994), 473-490. Zbl 0823.46023, MR 1297703, 10.1307/mmj/1029005074
Reference: [23] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I.Springer, Berlin-Heidelberg-New York (1977). Zbl 0362.46013, MR 0500056
Reference: [24] Oja, E.: Uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem.Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. 33 (1984), 424-438, 473 Russian. MR 0775767
Reference: [25] Oja, E.: Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem.Mat. Zametki 43 (1988), 237-246, 302 Russian; English translation in Math. Notes 43 (1988), 134-139. MR 0939524
Reference: [26] Oja, E.: Dual de l'espace des opérateurs linéaires continus.C. R. Acad. Sc. Paris, Sér. A 309 (1989), 983-986. Zbl 0684.47025, MR 1054748
Reference: [27] Oja, E.: Extension of functionals and the structure of the space of continuous linear operators.Tartu. Gos. Univ., Tartu (1991), Russian. Zbl 0783.46016, MR 1114543
Reference: [28] Oja, E.: $HB$-subspaces and Godun sets of subspaces in Banach spaces.Mathematika 44 (1997), 120-132. Zbl 0878.46013, MR 1464382, 10.1112/S002557930001202X
Reference: [29] Oja, E.: Geometry of Banach spaces having shrinking approximations of the identity.Trans. Amer. Math. Soc. 352 (2000), 2801-2823. Zbl 0954.46010, MR 1675226, 10.1090/S0002-9947-00-02521-6
Reference: [30] Oja, E.: Operators that are nuclear whenever they are nuclear for a larger range space.Proc. Edinb. Math. Soc. 47 (2004), 679-694. Zbl 1078.46012, MR 2097268, 10.1017/S0013091502001165
Reference: [31] Oja, E.: The impact of the Radon-Nikodým property on the weak bounded approximation property.Rev. R. Acad. Cien. Serie A. Mat. 100 (2006), 325-331. Zbl 1112.46017, MR 2267414
.

Files

Files Size Format View
CzechMathJ_58-2008-4_30.pdf 348.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo