Previous |  Up |  Next

Article

Title: A characterization of totally $\eta$-umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form (English)
Author: Kon, Mayuko
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 1279-1287
Summary lang: English
.
Category: math
.
Summary: We give a characterization of totally $\eta $-umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form in terms of totally umbilical condition for the holomorphic distribution on real hypersurfaces. We prove that if the shape operator $A$ of a real hypersurface $M$ of a complex space form $M^n(c)$, $c\neq 0$, $n\geq 3$, satisfies $g(AX,Y)=ag(X,Y)$ for any $X,Y\in T_0(x)$, $a$ being a function, where $T_0$ is the holomorphic distribution on $M$, then $M$ is a totally $\eta $-umbilical real hypersurface or locally congruent to a ruled real hypersurface. This condition for the shape operator is a generalization of the notion of $\eta $-umbilical real hypersurfaces. (English)
Keyword: real hypersurface
Keyword: totally $\eta $-umbilical real hypersurface
Keyword: ruled real hypersurface
MSC: 53C25
MSC: 53C40
MSC: 53C55
idZBL: Zbl 1174.53032
idMR: MR2471183
.
Date available: 2010-07-21T08:19:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140457
.
Reference: [1] Cecil, T. E., Ryan, P. J.: Focal sets and real hypersurfaces in complex projective space.Trans. Am. Math. Soc. 269 (1982), 481-499. Zbl 0492.53039, MR 0637703
Reference: [2] Ahn, S. S., Lee, S. B., Suh, Y. J.: On ruled real hypersurfaces in a complex space form.Tsukuba J. Math. 17 (1993), 311-322. Zbl 0804.53024, MR 1255475, 10.21099/tkbjm/1496162264
Reference: [3] Kimura, M.: Sectional curvatures of holomorphic planes on a real hypersurface in $P^n(c)$.Math. Ann. 276 (1987), 487-497. Zbl 0605.53023, MR 0875342, 10.1007/BF01450843
Reference: [4] Kimura, M., Maeda, S.: On real hypersurfaces of a complex projective space.Math. Z. 202 (1989), 299-311. Zbl 0661.53015, MR 1017573, 10.1007/BF01159962
Reference: [5] Kon, M.: Pseudo-Einstein real hyprersurfaces in complex space forms.J. Differ. Geom. 14 (1979), 339-354. MR 0594705, 10.4310/jdg/1214435100
Reference: [6] Lohnherr, M., Reckziegel, H.: On ruled real hypersurfaces in complex space forms.Geom. Dedicata 74 (1999), 267-286. Zbl 0932.53018, MR 1669351, 10.1023/A:1005000122427
Reference: [7] Montiel, S.: Real hypersurfaces of a complex hyperbolic space.J. Math. Soc. Japan 37 (1985), 515-535. Zbl 0554.53021, MR 0792990, 10.2969/jmsj/03730515
Reference: [8] Ortega, M., Pérez, J. D.: Constant holomorphic sectional curvature and type number of real hypersurfaces of complex hyperbolic space.Proc. 4th Internat. Congress of Geometry, Thessaloniki, 1996 Aristotle University of Thessaloniki Thessaloniki (1997). MR 1470995
Reference: [9] Ortega, M., Pérez, J. D., Suh, Y. J.: Real hypersurfaces with constant totally real sectional curvature in a complex space form.Czech. Math. J. 50 (2000), 531-537. MR 1777474, 10.1023/A:1022881510000
Reference: [10] Sohn, D. J., Suh, Y. J.: Classification of real hypersurfaces in complex hyperbolic space in terms of constant $\varphi$-holomorphic sectional curvatures.Kyngpook Math. J. 35 (1996), 801-819. MR 1678228
Reference: [11] Takagi, R.: Real hypersurfaces in a complex projective space with constant principal curvatures.J. Math. Soc. Japan 27 (1975), 43-53. Zbl 0311.53064, MR 0355906, 10.2969/jmsj/02710043
Reference: [12] Tashiro, Y., Tachibana, S.: On Fubinian and $C$-Fubinian manifolds.Kōdai Math. Sem. Rep. 15 (1963), 176-183. Zbl 0116.39001, MR 0157336, 10.2996/kmj/1138844787
Reference: [13] Yano, K., Kon, Masahiro: $CR$ Submanifolds of Kaehlerian and Sasakian Manifolds.Birkhäuser Boston-Basel-Stuttgart (1983). Zbl 0496.53037, MR 0688816
.

Files

Files Size Format View
CzechMathJ_58-2008-4_31.pdf 252.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo