Previous |  Up |  Next

Article

Title: A new characterization of ${\rm RBMO}(\mu )$ by John-Strömberg sharp maximal functions (English)
Author: Hu, Guoen
Author: Yang, Dachun
Author: Yang, Dongyong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 1
Year: 2009
Pages: 159-171
Summary lang: English
.
Category: math
.
Summary: Let $\mu $ be a nonnegative Radon measure on ${{\mathbb R}^d}$ which only satisfies $\mu (B(x, r))\le C_0r^n$ for all $x\in {{\mathbb R}^d}$, $r>0$, with some fixed constants $C_0>0$ and $n\in (0,d].$ In this paper, a new characterization for the space $\mathop{\rm RBMO}(\mu )$ of Tolsa in terms of the John-Strömberg sharp maximal function is established. (English)
Keyword: non-doubling measure
Keyword: $\mathop{\rm RBMO}(\mu )$
Keyword: sharp maximal function
MSC: 42B25
MSC: 42B35
MSC: 43A99
idZBL: Zbl 1224.42061
idMR: MR2486622
.
Date available: 2010-07-20T14:57:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140470
.
Reference: [1] Hu, G., Wang, X., Yang, D.: A new characterization for regular BMO with non-doubling measures.Proc. Edinburgh Math. Soc. 51 (2008), 155-170. Zbl 1138.42012, MR 2391636
Reference: [2] Hu, G., Yang, D.: Weighted norm inequalities for maximal singular integrals with non-doubling measures.Studia Math. 187 (2008), 101-123. MR 2413311, 10.4064/sm187-2-1
Reference: [3] John, F.: Quasi-isometric mappings.1965 Seminari 1962/63 Anal. Alg. Geom. e Topol., vol. 2, Ist. Naz. Alta Mat., 462-473, Ediz. Cremonese, Rome. Zbl 0263.46006, MR 0190905
Reference: [4] Lerner, A. K.: On the John-Strömberg characterization of BMO for nondoubling measures.Real Anal. Exch. 28 (2002/03), 649-660. Zbl 1044.42018, MR 2010347, 10.14321/realanalexch.28.2.0649
Reference: [5] Mateu, J., Mattila, P., Nicolau, A., Orobitg, J.: BMO for nondoubling measures.Duke Math. J. 102 (2000), 533-565. Zbl 0964.42009, MR 1756109, 10.1215/S0012-7094-00-10238-4
Reference: [6] Meng, Y.: Multilinear Calderón-Zygmund operators on the product of Lebesgue spaces with non-doubling measures.J. Math. Anal. Appl. 335 (2007), 314-331. Zbl 1121.42012, MR 2340323, 10.1016/j.jmaa.2007.01.075
Reference: [7] Nazarov, F., Treil, S., Volberg, A.: The $Tb$-theorem on non-homogeneous spaces.Acta Math. 190 (2003), 151-239. Zbl 1065.42014, MR 1998349, 10.1007/BF02392690
Reference: [8] Strömberg, J. O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces.Indiana Univ. Math. J. 28 (1979), 511-544. MR 0529683, 10.1512/iumj.1979.28.28037
Reference: [9] Tolsa, X.: $BMO$, $H^1$ and Calderón-Zygmund operators for non doubling measures.Math. Ann. 319 (2001), 89-149. MR 1812821, 10.1007/PL00004432
Reference: [10] Tolsa, X.: Painlevé's problem and the semiadditivity of analytic capacity.Acta Math. 190 (2003), 105-149. Zbl 1060.30031, MR 1982794, 10.1007/BF02393237
Reference: [11] Tolsa, X.: The semiadditivity of continuous analytic capacity and the inner boundary conjecture.Am. J. Math. 126 (2004), 523-567. Zbl 1060.30032, MR 2058383, 10.1353/ajm.2004.0021
Reference: [12] Tolsa, X.: Analytic capacity and Calderón-Zygmund theory with non doubling measures. Seminar of Mathematical Analysis, 239-271, {Colecc. Abierta}, {\it 71}, Univ. Sevilla Secr. Publ., Seville.(2004). MR 2117070
Reference: [13] Tolsa, X.: Bilipschitz maps, analytic capacity, and the Cauchy integral.Ann. Math. 162 (2005), 1243-1304. Zbl 1097.30020, MR 2179730, 10.4007/annals.2005.162.1243
Reference: [14] Tolsa, X.: Painlevé's problem and analytic capacity.Collect. Math. Extra (2006), 89-125. Zbl 1105.30015, MR 2264206
Reference: [15] Verdera, J.: The fall of the doubling condition in Calderón-Zygmund theory.Publ. Mat. Extra (2002), 275-292. Zbl 1025.42008, MR 1964824, 10.5565/PUBLMAT_Esco02_12
Reference: [16] Volberg, A.: Calderón-Zygmund capacities and operators on nonhomogeneous spaces {CBMS Regional Conference Series in Mathematics}, {\it 100}, Amer. Math. Soc., Providence, RI.(2003). MR 2019058
.

Files

Files Size Format View
CzechMathJ_59-2009-1_11.pdf 290.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo