Title:
|
A new characterization of ${\rm RBMO}(\mu )$ by John-Strömberg sharp maximal functions (English) |
Author:
|
Hu, Guoen |
Author:
|
Yang, Dachun |
Author:
|
Yang, Dongyong |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
59 |
Issue:
|
1 |
Year:
|
2009 |
Pages:
|
159-171 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mu $ be a nonnegative Radon measure on ${{\mathbb R}^d}$ which only satisfies $\mu (B(x, r))\le C_0r^n$ for all $x\in {{\mathbb R}^d}$, $r>0$, with some fixed constants $C_0>0$ and $n\in (0,d].$ In this paper, a new characterization for the space $\mathop{\rm RBMO}(\mu )$ of Tolsa in terms of the John-Strömberg sharp maximal function is established. (English) |
Keyword:
|
non-doubling measure |
Keyword:
|
$\mathop{\rm RBMO}(\mu )$ |
Keyword:
|
sharp maximal function |
MSC:
|
42B25 |
MSC:
|
42B35 |
MSC:
|
43A99 |
idZBL:
|
Zbl 1224.42061 |
idMR:
|
MR2486622 |
. |
Date available:
|
2010-07-20T14:57:46Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140470 |
. |
Reference:
|
[1] Hu, G., Wang, X., Yang, D.: A new characterization for regular BMO with non-doubling measures.Proc. Edinburgh Math. Soc. 51 (2008), 155-170. Zbl 1138.42012, MR 2391636 |
Reference:
|
[2] Hu, G., Yang, D.: Weighted norm inequalities for maximal singular integrals with non-doubling measures.Studia Math. 187 (2008), 101-123. MR 2413311, 10.4064/sm187-2-1 |
Reference:
|
[3] John, F.: Quasi-isometric mappings.1965 Seminari 1962/63 Anal. Alg. Geom. e Topol., vol. 2, Ist. Naz. Alta Mat., 462-473, Ediz. Cremonese, Rome. Zbl 0263.46006, MR 0190905 |
Reference:
|
[4] Lerner, A. K.: On the John-Strömberg characterization of BMO for nondoubling measures.Real Anal. Exch. 28 (2002/03), 649-660. Zbl 1044.42018, MR 2010347, 10.14321/realanalexch.28.2.0649 |
Reference:
|
[5] Mateu, J., Mattila, P., Nicolau, A., Orobitg, J.: BMO for nondoubling measures.Duke Math. J. 102 (2000), 533-565. Zbl 0964.42009, MR 1756109, 10.1215/S0012-7094-00-10238-4 |
Reference:
|
[6] Meng, Y.: Multilinear Calderón-Zygmund operators on the product of Lebesgue spaces with non-doubling measures.J. Math. Anal. Appl. 335 (2007), 314-331. Zbl 1121.42012, MR 2340323, 10.1016/j.jmaa.2007.01.075 |
Reference:
|
[7] Nazarov, F., Treil, S., Volberg, A.: The $Tb$-theorem on non-homogeneous spaces.Acta Math. 190 (2003), 151-239. Zbl 1065.42014, MR 1998349, 10.1007/BF02392690 |
Reference:
|
[8] Strömberg, J. O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces.Indiana Univ. Math. J. 28 (1979), 511-544. MR 0529683, 10.1512/iumj.1979.28.28037 |
Reference:
|
[9] Tolsa, X.: $BMO$, $H^1$ and Calderón-Zygmund operators for non doubling measures.Math. Ann. 319 (2001), 89-149. MR 1812821, 10.1007/PL00004432 |
Reference:
|
[10] Tolsa, X.: Painlevé's problem and the semiadditivity of analytic capacity.Acta Math. 190 (2003), 105-149. Zbl 1060.30031, MR 1982794, 10.1007/BF02393237 |
Reference:
|
[11] Tolsa, X.: The semiadditivity of continuous analytic capacity and the inner boundary conjecture.Am. J. Math. 126 (2004), 523-567. Zbl 1060.30032, MR 2058383, 10.1353/ajm.2004.0021 |
Reference:
|
[12] Tolsa, X.: Analytic capacity and Calderón-Zygmund theory with non doubling measures. Seminar of Mathematical Analysis, 239-271, {Colecc. Abierta}, {\it 71}, Univ. Sevilla Secr. Publ., Seville.(2004). MR 2117070 |
Reference:
|
[13] Tolsa, X.: Bilipschitz maps, analytic capacity, and the Cauchy integral.Ann. Math. 162 (2005), 1243-1304. Zbl 1097.30020, MR 2179730, 10.4007/annals.2005.162.1243 |
Reference:
|
[14] Tolsa, X.: Painlevé's problem and analytic capacity.Collect. Math. Extra (2006), 89-125. Zbl 1105.30015, MR 2264206 |
Reference:
|
[15] Verdera, J.: The fall of the doubling condition in Calderón-Zygmund theory.Publ. Mat. Extra (2002), 275-292. Zbl 1025.42008, MR 1964824, 10.5565/PUBLMAT_Esco02_12 |
Reference:
|
[16] Volberg, A.: Calderón-Zygmund capacities and operators on nonhomogeneous spaces {CBMS Regional Conference Series in Mathematics}, {\it 100}, Amer. Math. Soc., Providence, RI.(2003). MR 2019058 |
. |